首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1654篇
  免费   126篇
  国内免费   202篇
林业   74篇
农学   100篇
基础科学   197篇
  594篇
综合类   422篇
农作物   59篇
水产渔业   192篇
畜牧兽医   183篇
园艺   40篇
植物保护   121篇
  2024年   19篇
  2023年   52篇
  2022年   72篇
  2021年   97篇
  2020年   92篇
  2019年   81篇
  2018年   57篇
  2017年   85篇
  2016年   84篇
  2015年   49篇
  2014年   83篇
  2013年   127篇
  2012年   95篇
  2011年   89篇
  2010年   80篇
  2009年   83篇
  2008年   82篇
  2007年   90篇
  2006年   71篇
  2005年   62篇
  2004年   46篇
  2003年   50篇
  2002年   49篇
  2001年   54篇
  2000年   47篇
  1999年   41篇
  1998年   26篇
  1997年   18篇
  1996年   16篇
  1995年   20篇
  1994年   11篇
  1993年   16篇
  1992年   9篇
  1991年   3篇
  1990年   8篇
  1989年   6篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1984年   1篇
  1980年   1篇
排序方式: 共有1982条查询结果,搜索用时 15 毫秒
951.
An experiment was conducted to identify the main nitrogenous compound transported in the xylem sap of soybean plants nodulated with Rhizobium fredii. Soybean (Glycine max L. Merr.) cultivars, wild type Bragg (nod+, fix+) and its nitrate tolerant, hypernodulating mutant ntsll16 (nod++, fix+) were used for this experiment. These soybean plants were inoculated with a slowgrowing rhizobium, Bradyrhizobium japonicum USDAllO or fast-growing rhizobia consisting of a mixture of R. fredii USDA191, USDA193, and USDA-194 and grown in a phytotron under natural light and controlled temperature conditions. Xylem sap was collected from Bragg and ntsll16 plants at the flowering and pod elongation stages. Acetylene reduction activity per plant or per nodule weight was not different between soybean lines and inoculums. The composition of the nitrogenous compounds in the xylem sap was compared between the symbionts, with B. japonicum and R. fredii. At the flowering stage, ureide-N and amide-N accounted for 53 to 70% and 20 to 27% respectively of the total N in the sap collected from the plants inoculated either with B. japonicum or R. fredii. At the pod elongation stage, ureide-N and amide-N accounted for 74 to 85%, and 7 to 19% of total sap N. With the growth of the soybean plants, the ratio of ureide-N in the xylem sap increased. These results suggest that in the case of wild soybean and the hypernodulating mutant line nodulated by R. fredii, ureide is transported as the main nitrogenous compound of fixed nitrogen in the xylem sap in the same way as in plants nodulated with B. japonicum.  相似文献   
952.
953.
In acid soils, Al toxicity and nutrient deficiencies are main constraints for low yield of cacao (Theobroma cacao L.). A controlled growth chamber experiment was conducted to evaluate the effect of three Al saturations (0.2, 19, and 26%) adjusted by addition of dolomitic lime on growth and nutrient uptake parameters of cacao. Overall, increasing soil Al saturation decreased shoot and root dry weight, stem height, root length, relative growth rate, and net assimilation rate. However, increasing soil Al saturation increased leaf area, specific leaf area (total leaf area/total leaf dry wt), and leaf area ratio (total leaf area/shoot+root wt). Increasing soil Al saturation decreased uptake of elements. Nutrient influx (IN) and transport (TR) decreased significantly for K, Ca and Mg, and showed an increasing trend for S and P as soil Al saturation increased. However, increasing soil Al saturation significantly increased nutrient use efficiency ratio (ER, mg of shoot weight produced per mg of element in shoot) of Ca, Mg and K and decreased ER for other elements. Reduction of soil acidity constraints with addition of lime and fertilizers appear to be key factors in improving cacao yields in infertile, acidic, tropical soils.  相似文献   
954.
Most regional‐scale soil erosion models are spatially lumped and hence have limited application to practical problems such as the evaluation of the spatial variability of soil erosion and sediment delivery within a catchment. Therefore, the objectives of this study were as follows: (i) to calibrate and assess the performance of a spatially distributed WATEM/SEDEM model in predicting absolute sediment yield and specific sediment yield from 12 catchments in Tigray (Ethiopia) by using two different sediment transport capacity equations (original and modified) and (ii) to assess the performance of WATEM/SEDEM for the identification of critical sediment source areas needed for targeting catchment management. The performance of the two model versions for sediment yield was found promising for the 12 catchments. For both versions, model performance for the nine catchments with limited gully erosion was clearly better than the performance obtained when including the three catchments with significant gully erosion. Moreover, there is no significant difference (alpha 5 per cent) between the performances of the two model versions. Cultivated lands were found to be on average five times more prone to erosion than bush–shrub lands. The predicted soil loss values in most parts of Gindae catchment are generally high as compared with the soil formation rates. This emphasises the importance of implementing appropriate soil and water conservation measures in critical sediment source areas prioritising the steepest part of the catchment (i.e. areas with slope >50 per cent). The applicability of the WATEM/SEDEM model to environments where gully erosion is important requires the incorporation of permanent gully and bank gully erosion in the model structure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
955.
Iron (Fe) is an essential element for plants and its deficiency causes decrease not only in the photosynthetic rate but also in the actual photosystem II efficiency at steady‐state photosynthesis. The aim of this work was to determine the effect of Fe deficiency in plants of Cucumis sativus (L.) in two different experimental conditions. In the first experiment, plants were grown with or without Fe for 7 d. After 7 d, Fe‐deficient plants were resupplied with Fe and sampled after 12 h and 48 h. In the second experiment, plants were grown with Fe in the nutrient solution for 3 d and after this period, Fe was withdrawn and plants sampled after 3 and 6 d. Iron and chlorophyll (Chl) concentration and Chl‐fluorescence imaging were measured. In cucumber leaves subjected to Fe deficiency, fluorescence imaging of Chl a evidenced spatial changes on leaf lamina. Following Fe deficiency both after 7 d (Exp. 1) or 6 d (Exp. 2) leaves showed a slight, nonsignificant decrease in Fv/Fm ratio. However Chl‐fluorescence parameters determined in light conditions showed significant changes which indicate an alteration in the photosynthetic process. Surprisingly, the effect of Fe deficiency was more pronounced in leaves of plant of Exp. 2 as compared to those that had grown in complete absence of Fe (Exp. 1). In the latter case down‐regulated mechanisms preserved leaves from irreversible photoinhibition leading to complete recovery when plants were resupplied with the microelement.  相似文献   
956.
Intestinal uptake and renal excretion are the primary determinants of inorganic phosphate (Pi) balance in teleosts. In general, teleost kidneys may either reabsorb filtered Pi or secrete excess Pi into the urine. Primary monolayer cultures of flounder (Pleuronectes americanus) renal proximal tubule epithelium (PTCs) have helped identify several hormones that may participate in conservation or excretion of Pi. Mounted in Ussing chambers, the monolayer cultures can be used to assay transepithelial Pi transport. Several factors, including metabolic acidosis, elevation of plasma [Pi], salmon stanniocalcin, salmon somatolactin and mammalian prolactin, have now been shown to alter transepithelial Pi transport in winter flounder PTCs. Salmon stanniocalcin (STC) stimulated Pi luminal-to-peritubular transport (reabsorption) at a dosage of 12.5–50 ng/ml (0.25–1.0 nM). Net Pi transport changed within 30 min and progressively increased from slight net secretion in untreated controls to net reabsorption after 3 h. The target and function of somatolactin have been uncertain. In our hands salmon somatolactin (sSL) also stimulated Pi reabsorption by flounder PTCs in a dose-dependent manner at physiological levels of the hormone (12.5 ng/ml). Net Pi transport was significantly altered by sSL within 2 h after the initial exposure. Neither sSL nor STC had any effect on transepithelial Ca2+ transport. The effects of both sSL and STC were mimicked by forskolin, whereas H-89, a highly specific protein kinase A inhibitor, significantly decreased the effects of the hormones as well as forskolin-induced Pi reabsorption. Furthermore, the production and release of cAMP were increased more than two-fold following exposure to STC or sSL. The data indicate that STC and sSL directly stimulate net renal Pi reabsorption by a cAMP-dependent pathway. In addition, mammalian prolactin greatly, and salmon growth hormone slightly, increased net Pi reabsorptive flux, whereas salmon prolactin had no effect. These results appear to be related to the location of the cysteine disulfide bonds within the molecular structure. Although somatolactin and stanniocalcin may both stimulate renal Pi conservation, their actions may be related to different physiological conditions.  相似文献   
957.
The information collected from a European Union funded project on the ‘Distribution Biology and Biomass Estimates of the Sicilian Channel Anchovy (Engraulis encrasicolus)’ was used to analyse the linkage between the general circulation pattern of the Atlantic Ionian Stream (AIS) and the reproductive strategy of the Sicilian Channel anchovy. The main spawning ground is located in the NW region of the southern Sicilian coast. This region is a stable area of low current produced by the impingement towards the coast of the AIS and its bifurcation into two branches. The main branch heads towards the SE end of the Sicilian coast (Cape Passero) acting as a transport mechanism for the anchovy eggs and larvae. Along the AIS trajectory, there is a density front to the left of the current, facing downstream. This front is a consequence of the shoreward sloping of isopycnals that maintains the geostrophic flow, facilitating the mixing of deeper waters with surface layers and fertilization of coastal waters. The front enhances primary production assuring food availability for anchovy larvae during their advection by the AIS. The highest concentrations of larval anchovy were found off the SE Sicilian coast, in the area off Cape Passero. The greater average sizes of larvae found in this region, and their estimated age, support the evidence of advection by the AIS. The hydrographic features observed in this area, such as the existence of a well‐defined cyclonic vortex, implies the existence of upwelling in its centre, providing a suitable environment for sustained enhanced rates of primary production and allowing the larval population to maintain their relative position. This retention area is conceived as favourable for providing the necessary feeding conditions. The data acquired from a survey carried out to evaluate the anchovy recruitment strength confirm that larvae reach the juvenile stage in the south‐eastern coast of Sicily, since most of the young‐of‐the‐year anchovy were located in the Cape Passero region.  相似文献   
958.
The spiny lobster Panulirus argus is of ecological and commercial importance in the South Florida coast of the continental USA and throughout the Intra‐Americas Sea. Essential spiny lobster habitat in South Florida is primarily located in the Florida Keys coastal zone (including the Dry Tortugas), where the dynamic regional circulation coupled with the long planktonic larval duration (6–12 months) of P. argus raises questions of larval retention and recruitment. Locally spawned phyllosomata entrained in the Florida Current are likely to be expatriated out of the Straits of Florida, which implies that the local spiny lobster population is sustained by the transport of larval recruits from upstream locations. We examined the physical processes that may influence recruitment. Transport processes in the Keys coastal zone are spatially variable. Observed and modelled data suggest that the upper Keys is a point of onshore larval transport via the inshore meandering of the Florida Current, and the lower Keys to Dry Tortugas region apoint of retention through wind‐driven onshore/countercurrents and eddy recirculation. Eddies that propagate between the Dry Tortugas and the lower Keys facilitate the exchange of larvae between the Florida Current and the coastal zone. Northerly wind events associated with cold fronts can enhance recirculation of larvae in the upper Keys. The association of older larvae with the Florida Current front supports the hypothesis that spiny lobster larval recruits come from upstream sources in the Caribbean.  相似文献   
959.
苯唑卡因对美洲鲥运输应激的缓解作用研究   总被引:7,自引:0,他引:7       下载免费PDF全文
以苯唑卡因为麻醉剂,研究了人工养殖1+龄美洲鲥(Alosa sapidissima)幼鱼在有无麻醉剂作用下长途运输2 h后血清皮质醇和生化指标的变化,探索美洲鲥运输后高死亡率的原因以及麻醉剂对运输应激的缓解作用。实验对运输前、运输2 h、加20 mg/L苯唑卡因麻醉运输2 h后的美洲鲥血清中的皮质醇激素以及血液生化指标进行了比较。结果表明,运输应激对美洲鲥皮质醇和血液生理生化指标产生了显著的影响。运输2 h后美洲鲥血清皮质醇激素含量非麻醉运输组[(41.97±17.92)ng/mL,n=9和麻醉运输组[(15.62±1.80)ng/mL,n=9比运输前[(2.05±1.48)ng/mL,n=10分别显著上升20倍和4倍左右(P<0.05),麻醉运输组鱼皮质醇激素显著低于非麻醉运输组(P<0.05)。不加麻醉剂2 h运输应激后血清TP、AP、AKP、CHE、ALT、K+、Ca2+、GLU显著高于运输前水平(P<0.05),白蛋白与球蛋白之比AP/GP显著低于运输前水平(P<0.05),而麻醉运输组的上述指标与运输前没有显著差异。非麻醉运输组和麻醉剂组,运输后血清LDH、AST都呈不显著增加(P>0.05)。实验结果显示,美洲鲥在运输应激后,心脏和肝脏等组织受到一定程度的损伤,可能是导致美洲鲥运输后较高死亡率的原因。麻醉剂苯唑卡因应用于长途运输有助于维持鱼体生化指标的稳定,对鱼体运输应激反应有很好的缓解作用。  相似文献   
960.
The branchial Ca2+ uptake by teleost fish is under inhibitory control by the hormone stanniocalcin (STC) which is generated by the corpuscles of Stannius (CS). Removal of the CS in North American eel, Anguilla rostrata LeSueur, induced a rapid rise in blood calcium levels. Branchial Ca2+ influx following the extirpation of the CS (stanniectomy, STX) increased during the first four days and stayed elevated thereafter (in agreement with previous studies). The transepithelial potential (TEP) across the gills did not change after STX and this means that the electrochemical gradient for Ca2+ is less favourable for passive influx of Ca2+ in STX eel. Therefore, the Ca2+ influx in STX eels is a transcellular flux, with Ca2+ crossing the apical and basolateral membrane barrier. The kinetics of ATP-driven Ca2+-transport across basolateral plasma membranes from eel gills did not change after STX. Thus, the increased Ca2+-influx after STX is not correlated with changes in ATP-dependent Ca2+-extrusion across the basolateral membrane, suggesting a regulation at the apical membrane. Moreover, STC did not affect ATP-driven Ca2+-transport in isolated basolateral membranes (in vitro). STC (0.1 nM) reduced cAMP levels in dispersed eel gill cells. It had no significant effect on the IP3 levels in these cells. We postulate that STC controls the permeability to Ca2+ of the apical membranes of the Ca2+ transporting cells of fish gills by controlling second messenger operated Ca2+ channels in the apical membrane.
Résumé L'entrée de calcium au niveau des branchies est sous le controle inhibiteur de la stanniocalcine (STC) qui est synthétisée au niveau des corpuscules de Stannius (CS). L'ablation des CS chez l'anguille d'Amérique du Nord, Anguilla rostrata LeSueur, induit une augmentation rapide des niveaux de calcium dans le sang. Le flux entrant branchial de calcium consécutif à l'ablation des CS (stanniectomie, STX) augmente pendant les 4 premiers jours et reste élevé au-delà (en accord avec des études antérieures). Le potentiel transépithélial (TEP) à travers les branchies ne change pas après STX, ceci indiquant que le gradient électrochimique du Ca2+ est moins favorable pour le flux entrant passif du Ca2+ chez l'anguille STX. En conséquence, le flux entrant de Ca2+ chez l'anguille STX est un flux transcellulaire, avec le Ca2+ traversant la barrière membranaire apicale et basolatérale. La cinétique du transport de Ca2+ conduit par l'ATP à travers les membranes plasmatiques basolatérales de branches d'anguille n'est pas modifiée après STX. Ainsi, l'augmentation du flux entrant de Ca2+ après STX n'est pas corrlée avec des modifications de l'excrétion de Ca2+ conduit par l'ATP à travers la membrane basolatérale, suggérant donc une régulation au niveau de la membrane apicale. De plus, la STC ne modifie pas le transport de Ca2+ conduit par l'ATP dans des membranes basolatérales isolées (in vitro). La STC (0.1 nM) réduit les niveaux d'AMPc dans des cellules dispersées de branchies d'anguille. Cette hormone n'a pas d'effet significatif sur les niveaux d'IP3 dans ces cellules. Nous suggérons que la STC régule la perméabilité au Ca2+ des membranes apicales des cellules branchiales transporteuses de Ca2+ en controlant un second messager agissant sur les canaux calciques de la membrane apicale.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号