首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12351篇
  免费   715篇
  国内免费   970篇
林业   1791篇
农学   713篇
基础科学   445篇
  4015篇
综合类   3718篇
农作物   237篇
水产渔业   484篇
畜牧兽医   912篇
园艺   316篇
植物保护   1405篇
  2024年   85篇
  2023年   346篇
  2022年   478篇
  2021年   468篇
  2020年   502篇
  2019年   551篇
  2018年   401篇
  2017年   575篇
  2016年   737篇
  2015年   592篇
  2014年   676篇
  2013年   805篇
  2012年   1002篇
  2011年   1027篇
  2010年   822篇
  2009年   829篇
  2008年   713篇
  2007年   721篇
  2006年   595篇
  2005年   435篇
  2004年   348篇
  2003年   247篇
  2002年   161篇
  2001年   154篇
  2000年   121篇
  1999年   94篇
  1998年   97篇
  1997年   54篇
  1996年   79篇
  1995年   76篇
  1994年   55篇
  1993年   41篇
  1992年   34篇
  1991年   37篇
  1990年   18篇
  1989年   29篇
  1988年   15篇
  1987年   10篇
  1986年   1篇
  1985年   2篇
  1963年   1篇
  1962年   1篇
  1956年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Global warming in the Arctic may alter decomposition rates in Arctic soils and therefore nutrient availability. In addition, changes in the length of the growing season may increase plant productivity and the rate of labile C input below ground. We carried out an experiment in which inorganic nutrients (NH4NO3 and NaPO4) and organic substrates (glucose and glycine) were added to soils sampled from across the mountain birch forest-tundra heath ecotone in northern Sweden (organic and mineral soils from the forest, and organic soil only from the heath). Carbon dioxide production was then monitored continuously over the following 19 days. Neither inorganic N nor P additions substantially affected soil respiration rates when added separately. However, combined N and P additions stimulated microbial activity, with the response being greatest in the birch forest mineral soil (57% increase in CO2 production compared with 26% in the heath soil and 8% in the birch forest organic soil). Therefore, mineralisation rates in these soils may be stimulated if the overall nutrient availability to microbes increases in response to global change, but N deposition alone is unlikely to enhance decomposition. Adding either, or both, glucose and glycine increased microbial respiration. Isotopic separation indicated that the mineralisation of native soil organic matter (SOM) was stimulated by glucose addition in the heath soil and the forest mineral soil, but not in the forest organic soil. These positive ‘priming’ effects were lost following N addition in forest mineral soil, and following both N and P additions in the heath soil. In order to meet enhanced microbial nutrient demand, increased inputs of labile C from plants could stimulate the mineralisation of SOM, with the soil C stocks in the tundra-heath potentially most vulnerable.  相似文献   
992.
Tropical regions are currently undergoing remarkable rates of land use change accompanied by altered litter inputs to soil. In vast areas of Southern Ecuador forests are clear cut and converted for use as cattle pastures. Frequently these pasture sites are invaded by bracken fern, when bracken becomes dominant pasture productivity decreases and the sites are abandoned. In the present study implications of invasive bracken on soil biogeochemical properties were investigated. Soil samples (0-5 cm) were taken from an active pasture with Setaria sphacelata as predominant grass and from an abandoned pasture overgrown by bracken. Grass (C4 plant) and bracken (C3 plant) litter, differing in C:N ratio (33 and 77, respectively) and lignin content (Klason-lignin: 18% and 45%, respectively), were incubated in soils of their corresponding sites and vice versa for 28 days at 22 °C. Unamended microcosms containing only the respective soil or litter were taken as controls. During incubation the amount of CO2 and its δ13C-signature were determined at different time intervals. Additionally, the soil microbial community structure (PLFA-analysis) as well as the concentrations of KCl-extractable C and N were monitored. The comparison between the control soils of active and abandoned pasture sites showed that the massive displacement of Setaria-grass by bracken after pasture abandonment was characterized by decreased pH values accompanied by decreased amounts of readily available organic carbon and nitrogen, a lower microbial biomass and decreased activity as well as a higher relative abundance of actinomycetes. The δ13C-signature of CO2 indicated a preferential mineralization of grass-derived organic carbon in pasture control soils. In soils amended with grass litter the mineralization of soil organic matter was retarded (negative priming effect) and also a preferential utilization of easily available organic substances derived from the grass litter was evident. Compared to the other treatments, the pasture soil amended with grass litter showed an opposite shift in the microbial community structure towards a lower relative abundance of fungi. After addition of bracken litter to the abandoned pasture soil a positive priming effect seemed to be supported by an N limitation at the end of incubation. This was accompanied by an increase in the ratio of Gram-positive to Gram-negative bacterial PLFA marker. The differences in litter quality between grass and bracken are important triggers of changes in soil biogeochemical and soil microbial properties after land use conversion.  相似文献   
993.
During winter when the active layer of Arctic and alpine soils is below 0 °C, soil microbes are alive but metabolizing slowly, presumably in contact with unfrozen water. This unfrozen water is at the same negative chemical potential as the ice. While both the hydrostatic and the osmotic components of the chemical potential will contribute to this negative value, we argue that the osmotic component (osmotic potential) is the significant contributor. Hence, the soil microorganisms need to be at least halotolerant and psychrotolerant to survive in seasonally frozen soils. The low osmotic potential of unfrozen soil water will lead to the withdrawal of cell water, unless balanced by accumulation of compatible solutes. Many microbes appear to survive this dehydration, since microbial biomass in some situations is high, and rising, in winter. In late winter however, before the soil temperature rises above zero, there can be a considerable decline in soil microbial biomass due to the loss of compatible solutes from viable cells or to cell rupture. This decline may be caused by changes in the physical state of the system, specifically by sudden fluxes of melt water down channels in frozen soil, rapidly raising the chemical potential. The dehydrated cells may be unable to accommodate a rapid rise in osmotic potential so that cell membranes rupture and cells lyse. The exhaustion of soluble substrates released from senescing plant and microbial tissues in autumn and winter may also limit microbial growth, while in addition the rising temperatures may terminate a winter bloom of psychrophiles.Climate change is predicted to cause a decline in plant production in these northern soils, due to summer drought and to an increase in freeze-thaw cycles. Both of these may be expected to reduce soil microbial biomass in late winter. After lysis of microbial cells this biomass provides nutrients for plant growth in early spring. These feedbacks, in turn, could affect herbivory and production at higher trophic levels.  相似文献   
994.
We evaluated the spatial structures of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) fluxes in an Acacia mangium plantation stand in Sumatra, Indonesia, in drier (August) and wetter (March) seasons. A 60 × 100-m plot was established in an A. mangium plantation that included different topographical elements of the upper plateau, lower plateau, upper slope and foot slope. The plot was divided into 10 × 10-m grids and gas fluxes and soil properties were measured at 77 grid points at 10-m intervals within the plot. Spatial structures of the gas fluxes and soil properties were identified using geostatistical analyses. Averaged N2O and CO2 fluxes in the wetter season (1.85 mg N m−2 d−1 and 4.29 g C m−2 d−1, respectively) were significantly higher than those in the drier season (0.55 mg N m−2 d−1 and 2.73 g C m−2 d−1, respectively) and averaged CH4 uptake rates in the drier season (−0.62 mg C m−2 d−1) were higher than those in the wetter season (−0.24 mg C m−2 d−1). These values of N2O fluxes in A. mangium soils were higher than those reported for natural forest soils in Sumatra, while CO2 and CH4 fluxes were in the range of fluxes reported for natural forest soils. Seasonal differences in these gas fluxes appears to be controlled by soil water content and substrate availability due to differing precipitation and mineralization of litter between seasons. N2O fluxes had strong spatial dependence with a range of about 18 m in both the drier and wetter seasons. Topography was associated with the N2O fluxes in the wetter season with higher and lower fluxes on the foot slope and on the upper plateau, respectively, via controlling the anaerobic-aerobic conditions in the soils. In the drier season, however, we could not find obvious topographic influences on the spatial patterns of N2O fluxes and they may have depended on litter amount distribution. CO2 fluxes had no spatial dependence in both seasons, but the topographic influence was significant in the drier season with lowest fluxes on the foot slope, while there was no significant difference between topographic positions in the wetter season. The distributions of litter amount and soil organic matter were possibly associated with CO2 fluxes through their effects on microbial activities and fine root distribution in this A. mangium plantation.  相似文献   
995.
Arid areas are highly sensitive to climate change and are ideal model systems to study the potential impact of climate change on species' community structure. Biological soil crust (BSC) formation plays an ecological role in a number of key processes in the development of dry ecosystems. It was hypothesized that BSC succession and function are affected by aridity level and limited by rainfall. Furthermore, it is possible to infer the direction of the BSC succession based on aridity level, and the latter can imitate future climate change scenarios. The objectives of this study were to investigate the microbial biomass and diversity of the BSC structure in three sites differing in aridity level (semiarid, arid and hyper-arid), by combining physical and biophysiological measurements with 16S rRNA gene fragment and phospholipid fatty acid (PLFA) analyses. Physical and biophysiological parameters of the BSC were significantly influenced by aridity level. Total protein and polysaccharide contents were strongly correlated with total PLFA-based microbial biomass. Gram-positive biomarkers and microbial biomass were significantly higher in the wettest (semiarid) site than in the driest (hyper-arid) one. Multivariate-analysis based ordination of the PLFA data segregated the cluster of semiarid data from that of the hyper-arid site, while data from the arid site were dispersed between the two. The phylogenetic distribution of prominent 16S rRNA bacterial gene sequences along the aridity levels was in agreement with the PLFA analysis: the hyper-arid site was dominated by the cyanobacterium Microcoleus vaginatus, while diverse populations of cyanobacteria and soil bacteria were found in the other sites. These complementary tools allowed a simple and sensitive measurement of the influence of aridity levels on BSC successional stage. The results demonstrate that different aridity levels correspond to different BSC successional stages and those differences can be used as parameters for global change scenarios.  相似文献   
996.
Peatlands represent massive global C pools and sinks. Carbon accumulation depends on the ratio between net primary production and decomposition, both of which can change under projected increases of atmospheric CO2 and N deposition. The decomposition of litter is influenced by 1) the quality of the litter, and 2) the microenvironmental conditions in which the litter decomposes. This study aims at experimentally testing the effects of these two drivers in the context of global change. We studied the in situ litter decomposition from three common peatland species (Eriophorum vaginatum, Polytrichum strictum and Sphagnum fallax) collected after one year of litter production under pre-treatment conditions (elevated CO2: 560 ppm or enhanced N: 3 g m−2 y−1 NH4NO3) and decomposed the following year under treatment conditions (same as pre-treatment). By considering the cross-effects between pre-treatments and treatments, we distinguished between the effects on mass loss of 1) the pre-treatment-induced litter quality and 2) the treatment conditions under which the litters were decomposing. The combination between CO2 pre-treatment and CO2 treatment reduced Polytrichum decomposition by −24% and this can be explained by litter quality-driven decomposition changes brought by the pre-treatment. CO2 pre-treatment reduced Eriophorum litter quality, although this was not sufficient to predict decomposition. The N addition pre-treatment reduced the decomposition of Eriophorum, due to enhanced lignin and soluble phenols concentrations in the initial litter, and reduced litter-driven losses of starch and enhanced litter-driven losses of soluble phenols. While decomposition indices based on initial litter quality provide a broad explanation of quantitative and qualitative decomposition, they can only be taken as first approximations. Indeed, the microbial ATP activity, the litter N loss and resulting litter quality, were strongly altered irrespective of the compounds' initial concentration and by means of processes that occurred independently of the initial litter-qualitative changes. The experimental design was valuable to assess litter- and ecosystem-driven decomposition pathways simultaneously or independently. The ability to separate these two drivers makes it possible to attest the presence of litter-qualitative changes even without any litter biochemical determinations, and shows the screening potential of this approach for future experiments dealing with multiple plant species.  相似文献   
997.
We used a combination of molecular, culture and biochemical methods to test the hypothesis that severe infection of pine by dwarf mistletoe (genus Arceuthobium) has significant effects on structure and function of soil fungal communities, and on carbon cycling in soils. PCR and DNA sequencing of the basidiomycete communities in paired blocks of uninfected and infected trees revealed: (1) that the top, organic soil layer in this system is inhabited almost exclusively by ectomycorrhizal fungi; (2) no difference in species richness (6 species core−1 in both) or Shannon-Wiener evenness (0.740 and 0.747 in uninfected and infected blocks respectively), however Shannon-Wiener diversity was significantly greater in infected blocks (1.19 vs 1.94 in uninfected and infected blocks respectively, P < 0.05); (3) significant differences in basidiomycete species composition, with nearly complete absence of two system co-dominant Russula species in infected blocks, and replacement of one co-dominant Piloderma species with another in infected plots, indicating physiological variability within the genus. Soil fungal physiological diversity measured using the Fungilog system was significantly greater in terms of both number of carbon substrates used by culturable soil fungi (both ascomycetes and basidiomycetes) in infected blocks, and the rate at which these substrates were used. Soil enzyme assays revealed greater laccase, peroxidase, and cellulase activities in soils associated with infected trees. Thus, event cascades associated with severe dwarf mistletoe infection not only significantly affected soil fungal species composition and increased species diversity, but also impacted on carbon-related function and functional diversity. Given the geographic range of this pathogen, and forecasts that epidemics of this disease will increase in range in severity with global climate change, these effects have the potential to significantly impact local and global carbon budgets.  相似文献   
998.
乌审旗东北部典型地段天然植被调查研究   总被引:1,自引:0,他引:1  
对乌审旗东北部典型地段天然植被进行了调查研究,结果表明:研究区样地主要可以分为4种典型地段,且不同的典型地段上其优势植物种类不同。研究区样地的植被主要以菊科、禾本科和藜科植物为主,其中以菊科植物居多,其次是禾本科植物。调查研究还发现,研究区附近主要有34种植物,分属于16个科,28个属,其中菊科植物有10种,为最多,菊科植物中蒿属占5种,其次是禾本科植物,有6种。  相似文献   
999.
Clear, degradable polymer films are used with agricultural crops to alter the germination and growing environment and extend the length of the growing season. The film acts like a greenhouse, elevating temperatures and improving soil water. We examined the potential of polymer film to improve emergence and persistence of direct‐seeded native vegetation. A seed mix comprising three tree species and two shrubs was sown in early August 2015, with and without polymer film. The effect of duration of polymer film (from 0–10 weeks) on emergence and persistence was tested, and the effects of polymer film on temperature and soil moisture were monitored. Our hypothesis that polymer film would improve emergence was partially supported, with between 6 and 10 weeks of polymer film coverage increasing emergence of small‐seeded species above the level of the Control. The polymer film increased temperatures by an average of 5 °C and volumetric water content by up to 10%, compared with ambient conditions, and reduced fluctuations in soil moisture, which may have contributed to the increased emergence observed. Emergence was low across all treatments (range 0·2–47%). Our hypothesis that polymer film would improve persistence was not supported, with seedling numbers declining rapidly following removal of the polymer film and no differences between treatments in percentage persistence by the end of the experiment. We concluded that polymer film is a potentially useful tool for improving emergence of smaller‐seeded species in direct seeding for land restoration, although provided no benefit for emergence of the larger‐seeded species. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
1000.
Understanding plant water-use patterns is important for improving water-use efficiency and for sustainable vegetation restoration in arid and semi-arid regions. However, seasonal variations in water sources and their control by different sand-fixing plants in water-limited desert ecosystems remain poorly understood. In this study, stable isotopic ratios of hydrogen (δ2H) and oxygen (δ18O) in precipitation, soil water, groundwater, and xylem water were determined to document seasonal changes in water uptake by three representative plant species (Pinus sylvestris var. mongolica Litv., Amygdalus pedunculata Pall., and Salix psammophila) in the northeastern Mu Us sandy land, Northwest China. Based on the depth distribution and temporal variation of measured gravimetric soil water content (SWC), the soil water profile of the three species stands was divided into active (0.01 g g-1 < SWC < 0.08 g g-1, 20% < coefficient of variation (CV) < 45%), stable (0.02 g g-1 < SWC < 0.05 g g-1, CV < 20%), and moist (0.08 g g-1 < SWC < 0.20 g g-1, CV > 45%) layers. Annually, P. sylvestris, A. pedunculata, and S. psammophila obtained most water from deep (59.2% ±9.7%, moist layer and groundwater), intermediate (57.4% ±9.8%, stable and moist layers), and shallow (54.4% ±10.5%, active and stable layers) sources, respectively. Seasonally, the three plant species absorbed more than 60% of their total water uptake from the moist layer and groundwater in the early (June) dry season; then, they switched to the active and stable layers in the rainy season (July–September) for water resources (50.1%–62.5%). In the late (October–November) dry season, P. sylvestris (54.5%–66.2%) and A. pedunculata (52.9%–63.6%) mainly used water from stable and moist layers, whereas S. psammophila (52.6%–70.7%) still extracted water predominantly from active and stable layers. Variations in the soil water profile induced by seasonal fluctuations in precipitation and groundwater levels and discrepancies in plant phenology, root distribution, and water demand are the main factors affecting the seasonal water-use patterns of artificial sand-fixing plants. Our study addresses the issue of plant water uptake with knowledge of proportional source-water use and reveals important implications for future vegetation restoration and water management in the Mu Us sandy land and similar desert regions around the world.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号