首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50375篇
  免费   2981篇
  国内免费   3820篇
林业   4400篇
农学   2479篇
基础科学   2490篇
  22498篇
综合类   17882篇
农作物   1270篇
水产渔业   326篇
畜牧兽医   1854篇
园艺   662篇
植物保护   3315篇
  2024年   454篇
  2023年   1310篇
  2022年   1747篇
  2021年   1795篇
  2020年   1835篇
  2019年   2075篇
  2018年   1632篇
  2017年   2521篇
  2016年   2974篇
  2015年   2080篇
  2014年   2424篇
  2013年   3355篇
  2012年   4340篇
  2011年   3318篇
  2010年   2618篇
  2009年   2705篇
  2008年   2521篇
  2007年   2820篇
  2006年   2399篇
  2005年   2005篇
  2004年   1542篇
  2003年   1312篇
  2002年   1031篇
  2001年   978篇
  2000年   803篇
  1999年   613篇
  1998年   525篇
  1997年   542篇
  1996年   450篇
  1995年   471篇
  1994年   430篇
  1993年   339篇
  1992年   286篇
  1991年   278篇
  1990年   197篇
  1989年   172篇
  1988年   108篇
  1987年   85篇
  1986年   43篇
  1985年   14篇
  1984年   6篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   4篇
  1977年   1篇
  1976年   1篇
  1963年   1篇
  1962年   6篇
  1955年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
China's soil pollution is serious, with 16·1% of all soil samples exceeding soil quality standard according to a national soil quality survey. On 31 May 2016, the Chinese government unleashed an ambitious plan to address its soil pollution problem. The large scale and fast pace of the proposed plan pose many challenges. There are biogeochemical complexities governing the fate and transport of soil contaminants that require more thorough study. There are also human‐related complexities and dynamic feedback loops, which determine the behaviour of farmers, industrial polluters, remediation practitioners and regulators. Soil pollution prevention and remediation also have externalities and spillover effects ranging from greenhouse gas emission to social justice. Rigorous policy instruments must be developed to account for complex human behaviour, to strengthen risk management and to encourage interdisciplinary scientific research. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
992.
The widespread adoption of the sediment fingerprinting approach to guide catchment management has been limited by the cost and the difficulty to prepare and process samples for geochemical and radionuclide analyses. Spectral properties have recently been shown to provide a rapid and cost‐efficient alternative for this purpose. The current research objective was (i) to quantify the sediment source contributions in a 1∙19‐km2 rural catchment of Southern Brazil by using mid‐infrared (MIR) spectroscopy and (ii) to compare these results with those obtained with geochemical approach and near‐infrared and ultraviolet–visible spectroscopy methods. The sediment sources to discriminate were cropland surface (n  = 20), unpaved roads (n  = 10) and stream channel banks (n  = 10). Twenty‐nine suspended sediment samples were collected at the catchment outlet during nine significant flood events. The sources could be distinguished by MIR spectroscopy. Cropland and channel bank sources mainly differed in their clay mineral contents, but their similar organic matter content complicated the MIR‐model predictions. Unpaved road contributions were discriminated from the other sources by their lower organic carbon content. When the results of the current research based on MIR spectroscopy are compared with those obtained using other sediment fingerprinting approaches, based on geochemistry and near‐infrared and ultraviolet–visible spectroscopy, an overestimation of channel banks contribution and an underestimation of cropland and unpaved road contributions is found. These results suggest that MIR spectroscopy can provide a useful tool that is non‐destructive, rapid and cheap for tracing sediment sources in rural catchments and for guiding the implementation of soil and water conservation measures. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
993.
Hardpan is a major cause of land degradation that affects agricultural productivity in developing countries. However, relatively, little is known about the interaction of land degradation and hardpans. The objective of this study was, therefore, to investigate soil degradation and the formation of hardpans in crop/livestock‐mixed rainfed agriculture systems and to assess how changes in soil properties are related to the conversion of land from forest to agriculture. Two watersheds (Anjeni and Debre Mewi) were selected in the humid Ethiopian highlands. For both watersheds, 0–45 cm soil penetration resistance (SPR, n  = 180) and soil physical properties (particle size, soil organic matter, pH, base ions, cation exchange capacity, silica content, bulk density and moisture content) were determined at 15 cm depth increments for three land uses: cultivated, pasture and forest. SPR of agricultural fields was significantly greater than that of forest lands. Dense layers with a critical SPR threshold of ≥2000 kPa were observed in the cultivated and pasture lands starting at a depth of 15–30 cm but did not occur in the undisturbed forest land. Compared with the original forest soils, agricultural fields were lower in organic matter, cation exchange capacity, and exchangeable base cations; more acidic; had a higher bulk density and more fine particles (clay and silt); and contained less soluble silica. Overall, our findings suggest that soil physical and chemical properties in agricultural lands are deteriorated, causing disintegration of soil aggregates, resulting in greater sediment concentration in infiltration water that clogged up macro‐pores, thereby disconnecting deep flow paths found in original forest soils. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
994.
Anionic polyacrylamide (PAM) can prevent soil erosion, but its effect on fine particulate phosphorus (P), such as colloidal P, has not been thoroughly examined. The effects of PAM on the release potentials of water‐dispersible colloids (WDC) and total P, molybdenum‐reactive P (MRP), and molybdenum‐unreactive P (MUP) in the colloidal and truly dissolved phases (i.e., TPcoll, MRPcoll, MUPcoll, TPtruly, MRPtruly, and MUPtruly) from six soils across South China were tested in this study. The results showed that the release potentials of TPcoll in the control treatments were 6·9–46·1 mg kg−1 and generally highest in sandy loam soil. Following low (12·5 kg ha−1), middle (25 kg ha−1), and high (50 kg ha−1) levels of PAM application, the release potential of TPcoll decreased by 41·7, 63·2, and 77·4% compared to the control group, respectively. Additionally, PAM may trigger MRPcoll and TPtruly releases in sandy loam and/or silt soils, and for most soils, MRPtruly and MUPtruly showed the highest release potentials at middle or high PAM levels. A significant PAM application level by soil site interaction for the release potentials of WDC and colloidal P was observed. Multiple linear regression showed that the PAM rate combined with soil sand content can successfully predict the release potentials of WDC (R2 = 0·552, p  < 0·001) and TPcoll (R2 = 0·738, p  < 0·001). Our results suggest that PAM can effectively reduce the loss of soil colloids and colloidal P, while its effects are related to both application level and soil texture. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
995.
According to the German Soil Taxonomy, the formation of cemented horizons in Podzols is restricted to the precipitation of iron oxides. However, in iron‐poor sandy substrates, also illuviation of only organic compounds can form cemented horizons with penetration resistances of up to 14 kg cm−2. We present a reproducible field test for classifying pedogenic cementation in Podzols and suggest considering cemented horizons (Bmh and Bhm) in the upcoming edition of the Guidelines for Soil Mapping.  相似文献   
996.
The plant‐availability of phosphorus (P) in fertilizers and soil can strongly influence the yield of agricultural crops. However, there are no methods to efficiently and satisfactorily analyze the plant‐availability of P in sewage sludge‐based P fertilizers except by undertaking time‐consuming and complex pot or field experiments. We employed the diffusive gradients in thin films (DGT) technique to quantify the plant P availability of various types of P fertilizers with a novel focus on sewage sludge‐based P fertilizers. Mixtures of fertilizer and soil were incubated for 3 weeks at 60% water holding capacity. DGT devices were deployed at the beginning of the incubation and again after 1, 2, and 3 weeks. Two weeks of incubation were sufficient for the formation of plant‐available P in the fertilizer/soil mixtures. In a pot experiment, the DGT technique predicted maize (Zea mays L.) biomass yield and P uptake significantly more accurately than standard chemical extraction tests for P fertilizers (e.g ., water, citric acid, and neutral ammonium citrate). Therefore, the DGT technique can be recommended as a reliable and robust method to screen the performance of different types of sewage sludge‐based P fertilizers for maize cultivation minimizing the need for time‐consuming and costly pot or field experiments.  相似文献   
997.
The aim of this research was to investigate the effect of biochar amendment on soil acidity and other physico‐chemical properties of soil in Southern Ethiopia using a field experiment of three treatments: (1) biochar made of corn cobs, (2) biochar made of chopped Lantana camara stem, and (3) biochar made of Eucalyptus globulus feedstock and a control, in which neither of the biochar was used. Each treatment had three levels of 6, 12 and 18 t ha−1. The experiment was setup with RCBD in a factorial arrangement with three replications. In this regard, a total of 36 plots (each 2 × 2 m size) were applied with three replications to the depth of 0–15cm. From these 36 plots, composite soil samples were collected to the depth of 0–30 cm and analyzed for bulk density, total porosity, pH, soil organic carbon, total nitrogen, available phosphorus, potassium, and exchangeable acidity using standard procedures before and after biochar application. Two‐way ANOVA was also used to analyze the impact of the biochars on soil acidity and other properties. For the treatments that had significant effects, a mean separation was made using Least Significance Difference (LSD) test. The results showed the application of biochar significantly reduced, soil bulk density and exchangeable acidity when compared with a control (p < 0.05). Moreover, the total soil porosity, soil pH, total nitrogen, soil organic carbon, available phosphorus, and potassium were significantly increased in the soil. From among applied biochar treatments, Lantana camara applied at the level of 18 t ha−1 had a higher impact in changing soil physico‐chemical properties. In general, the study suggests that the soil acidity can be reduced by applying biochar as it can amend other soil physico‐chemical properties.  相似文献   
998.
Glucose is widely used to study the dynamics of easily available organics in soil. Pure culture studies have revealed that many microorganisms can sense and respond to glucose through chemosensory mechanisms that are not directly reliant on energy catabolism. However, the rapid mineralization of glucose by microorganisms makes it difficult to disentangle its energy effects from such non‐catabolic interactions. “Non‐metabolizable” glucose analogues have proven useful in mechanistic studies of glucose in pure culture, but have never been applied to complex microbial communities in soil. We sought to determine how their mineralization in soil differs from that of glucose, and whether they have potential as a new approach for investigating chemosensory mechanisms in soil microbiology. We incubated soil from an agricultural Haplic Luvisol under controlled conditions for 24 d and monitored CO2 efflux after addition of (1) glucose, and three “non‐metabolizable” glucose analogues: (2) 2‐deoxyglucose (DG), (3) α‐methylglucoside (αMG), and (4) 3‐O‐methyl‐glucose (OMG), at three concentration levels, along with a control. All three analogues did in fact produce a large increase in soil CO2 efflux, but the dynamics of their mineralization differed from the rapid degradation seen for glucose. At medium and high concentrations, CO2 efflux peaked between 2.5 and 4 d after amendment with DG and αMG, and was delayed by about one week for OMG. The markedly different patterns of mineralization between glucose and OMG offer a new tool for investigating the behavior of glucose in soil. By using OMG as a glucose model, chemosensory mechanisms could be studied with limited interference from energy catabolism.  相似文献   
999.
Properly estimating soil nitrogen (N) mineralization as a consequence of different agronomic practices would result in better soil N fertility management. In this study, we tested the differences between laboratory and in situ resin‐core incubation methods for estimating soil net N mineralization for long‐term burley tobacco (Nicotiana tobacum L .) tillage and rotation systems. The laboratory incubation method used crushed, homogenized, litter‐free soil samples, and the in situ resin‐core incubation method used an intact soil core with the inclusion of any plant residue below or above ground. Comparisons showed that no‐tillage had significantly increased soil net N mineralization compared to conventional tillage with the laboratory incubation method, while there was no significant difference between tillage methods with the in situ resin‐core method. This indicates that soil pretreatment in the laboratory incubation method can create an “artificial tillage effect” for soil previously managed with no‐tillage, resulting in overestimated soil net N mineralization. The rotation comparison showed that different crop sequences had no impact on measured net N mineralization with the laboratory incubation method. However, a preceding soybean crop did significantly increase net soil N mineralization compared to preceding corn when measured with the in situ resin‐core method. This suggests that discarding plant residue in the laboratory incubation method can neglect the potential effect of plant residue on soil N mineralization. Therefore, it is important to be aware that soil pretreatment may influence soil N mineralization estimates, potentially resulting in flawed decisions for soil N fertility management.  相似文献   
1000.
Silver nanoparticles (AgNP) are used in a broad range of consumer products and industrial applications. During the regular product life cycle and disposal, AgNP are continuously released into the environment. Hence, the aim of this study was to investigate the potential ecotoxicological effects of AgNP exposure on amoebae. The Acanthamoeba castellanii ATCC 30234 strain and environmental isolate Acanthamoeba strain C5/2, which are both affiliated with genotype T4, were chosen as representatives of ecologically important soil protozoan organisms. The amoebae were exposed to citrate‐stabilized AgNP (30 and 70 nm in size) for 24 h and 96 h at concentrations ranging from 600 µg L−1 to 20 mg L−1. A newly adopted cell culture based microscopic assay was applied to assess the adherence ability of the amoeba trophozoites. The general metabolic activity of Acanthamoeba was determined to be a second independent endpoint by means of intracellular reduction of the redox dye AlamarBlue®. The fate of AgNP within the amoebae and test solutions was visualized by light‐ and transmission electron microscopy (TEM). Both Acanthamoeba strains showed a significant dose‐dependent decrease of adherence ability (p  < 0.04) and metabolic activity (p < 0.01) after 96 h of AgNP exposure. The environmental Acanthamoeba strain C5/2 lost both its adherence ability and metabolic activity at lower AgNP concentrations than the type strain, indicating a higher sensitivity to ionic silver. This was confirmed by the application of AgNO3, provoking a higher effect level in strain C5/2. AgNP was visualized intracellularly by transmission electron microscopy within the cytoplasm of Acanthamoeba . This is the first report to show the ecotoxicological effects of short‐term AgNP exposure on the soil protist Acanthamoeba , causing both changes in the adherence ability and metabolic activity of this amoeba. This combined approach may be a powerful tool in the future for predicting potential harmful ecotoxicological effects of AgNP exposure using soil protozoans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号