首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6745篇
  免费   2865篇
  国内免费   34篇
林业   231篇
农学   521篇
基础科学   56篇
  1500篇
综合类   201篇
农作物   174篇
水产渔业   2064篇
畜牧兽医   3013篇
园艺   28篇
植物保护   1856篇
  2024年   1篇
  2023年   10篇
  2022年   16篇
  2021年   130篇
  2020年   499篇
  2019年   942篇
  2018年   810篇
  2017年   879篇
  2016年   672篇
  2015年   648篇
  2014年   587篇
  2013年   863篇
  2012年   983篇
  2011年   588篇
  2010年   523篇
  2009年   256篇
  2008年   266篇
  2007年   135篇
  2006年   117篇
  2005年   124篇
  2004年   107篇
  2003年   100篇
  2002年   94篇
  2001年   93篇
  2000年   111篇
  1999年   18篇
  1998年   6篇
  1997年   10篇
  1996年   7篇
  1995年   5篇
  1994年   3篇
  1993年   7篇
  1992年   6篇
  1991年   7篇
  1990年   7篇
  1989年   6篇
  1988年   2篇
  1987年   3篇
  1985年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有9644条查询结果,搜索用时 31 毫秒
71.
A substantial proportion of farmed grassland soils in Northern Ireland (NI) are overly enriched with P and pose a risk to water quality. To address this problem, manure could be exported rather than recycled to P‐enriched land and the latter intensively cropped with grass silage to deplete soil P. To assess the efficacy of such a strategy, a P‐ and K‐enriched grassland site was intensively cropped over a 6‐yr period with fertilizer N alone supplied to support silage growth. By year 6, soil P had declined from index 5 to index 3, and it was estimated that two more years of this management may bring it into the target index 2 range. Soil K, however, declined rapidly from index 4 to index 1 in just 4 yr, with the result that grass production became limited by K deficiency. It was concluded that nonrecycling of manure to P‐enriched grassland under silage management is probably the most effective strategy for lowering soil P status, but care must be taken to prevent K deficiency occurring.  相似文献   
72.
Extreme drought events can directly decrease productivity in perennial grasslands. However, for rhizomatous perennial grasses it remains unknown how drought events influence the belowground bud bank which determines future productivity. Ninety‐day‐long drought events imposed on Leymus chinensis, a rhizomatous perennial grass, caused a 41% decrease in the aboveground biomass and a 28% decrease in belowground biomass. Aboveground biomass decreased due to decrease in both the parent and the daughter shoot biomass. The decreases in daughter shoot biomass were due to reductions in both the shoot number and each individual shoot weight. Most importantly, drought decreased the bud bank density by 56%. In addition, drought induced a bud allocation change that decreased by 41% the proportion of buds that developed into shoots and a 41% increase in the buds that developed into rhizomes. Above results were supported by our field experiment with watering treatments. Thus, a 90‐day‐long summer drought event decreases not only current productivity but also future productivity, because the drought reduces the absolute bud number. However, plasticity in plant development does partly compensate for this reduction in bud number by increasing bud development into rhizomes, which increases the relative allocation of buds into future shoots, at the cost of a decrease in current shoots.  相似文献   
73.
A UV exclusion experiment was conducted on durum wheat (Triticum durum Desf. var. Claudio) grown in pots. Plants were grown under three different radiative treatments in greenhouses covered with plastic filters: Teflon, transparent to the entire region of natural UV‐visible sunlight (TEF); polyester, transparent above 312 nm (MYL, excluding UVB) and Lee, transparent above 400 nm (LEE, excluding both UVA and UVB). Analyses have been carried out to determine the concentration of photosynthetic pigments in leaves, UV‐absorbing compounds, nitrogen and carbon in leaves, culms and spikes and proteins and gluten in grains. In particular, plants grown under UV exclusion showed a reduction in protein and dry gluten content (consequently without variation in the ratio dry gluten/protein), but at the same time, a significant increase of gluten index, which is a parameter to define the quality of gluten, was observed. The results highlighted the influence played by UV radiation on some biochemical parameters, mainly UV‐absorbing compounds, leaf nitrogen and grain protein characteristics of durum wheat cultivated under Mediterranean conditions. In particular, natural level of UV in the Mediterranean improves the characteristics of durum wheat flour important for pasta production (high dry gluten level), while the UV exclusion could improve characteristics of flour important for bread production (high gluten index).  相似文献   
74.
The spawning success of lithophilic salmonids is strongly influenced by the fine sediment content (“fines”) of spawning substrates, yet knowledge on the impacts of fines on the spawning of non‐salmonid lithophiles remains limited, despite their ecological and socio‐economic importance in European rivers. Consequently, the aim here was to use an ex‐situ experiment to investigate the impact of sand content on egg survival and timing of larval emergence of the surface‐spawning cyprinid European barbel Barbus barbus. Thirty incubator boxes within a recirculating system were filled with one of five experimental sediment mixtures (0%–40% sand by mass) that each contained 300 fertilised eggs at a depth of 50 mm. Emerged, free‐swimming larvae were captured and counted daily to assess grain‐size effects on larval survival and emergence. Specifically, total proportion of emerged larvae, cumulative daily proportion of emerged larvae and time required to reach 50% emergence were measured during the study. Whilst the proportion of sand in the sediments did not have a significant impact on egg‐to‐emergence survival (mean survival per treatment 75%–79%), it significantly affected the timing of larval emergence to the water column; early emergence was detected in treatments with elevated sand content (on average, 50% emergence after 12–13 days versus 19 days in the control). Similar to findings from salmonid studies, these results suggest high sand content in spawning gravels can influence timing of larval emergence and potentially cyprinid lithophilic fish survival.  相似文献   
75.
High temperature is a major environmental factor that limits wheat (Triticum aestivum L.) productivity. Climate models predict greater increases in night‐time temperature than in daytime temperature. The objective of this research was to compare the effects of high daytime and high night‐time temperatures during anthesis on physiological (chlorophyll fluorescence, chlorophyll concentration, leaf level photosynthesis, and membrane damage), biochemical (reactive oxygen species (ROS) concentration and antioxidant capacity in leaves), growth and yield traits of wheat genotypes. Winter wheat genotypes (Ventnor and Karl 92) were grown at optimum temperatures (25/15 °C, maximum/minimum) until the onset of anthesis. Thereafter, plants were exposed to high night‐time (HN, 25/24 °C), high daytime (HD, 35/15 °C), high daytime and night‐time (HDN, 35/24 °C) or optimum temperatures for 7 days. Compared with optimum temperature, HN, HD and HDN increased ROS concentration and membrane damage and decreased antioxidant capacity, photochemical efficiency, leaf level photosynthesis, seed set, grain number and grain yield per spike. Impact of HN and HD was similar on all traits. Greater impact on seed set, grain number and grain yield per spike was observed at HDN compared with HN and HD. These results suggest that HN and HD during anthesis cause damage of a similar magnitude to winter wheat.  相似文献   
76.
Application of hydrophilic polymers composed of cross‐linked polyacrylate can improve soil water‐holding capacity and accelerate the restoration of post‐mining substrates. In this work, we studied the persistence of a polyacrylate polymer incorporated into a soil and its impact on plant nutrients at a reclamation site of former lignite mining in Lusatia (Germany). In contrast to autumn application, the incorporation of the polymer enhanced the sequestration of plant‐derived carbon in the soil, which was reflected by a significant increase in the concentration of a lignin marker. Attenuated total reflexion–Fourier transform infrared spectra (ATR‐FTIR) and total elemental contents in the applied polymer suggested an intensive cation exchange between the polymer framework and the soil‐forming substrate. In addition, there was an enrichment of carbonaceous material, which seems to reduce the swelling and thus the water‐holding capacity of the cross‐linked polyacrylate. Conversely, this process protected the polymer structure from rapid decomposition.  相似文献   
77.
78.
Cañahua (Chenopodium pallidicaule Aellen) is a semi‐domesticated relative of quinoa (Chenopodium quinoa Willd.) with high nutritious quality. It is tolerant to frost, drought, saline soils and pests. One seed yield limitation is seed loss during the maturity stages. Two greenhouse experiments in Denmark and field experiments in Bolivia were carried out to determine seed shattering in landraces and cultivars with different growth habits. 15–21 % of the seed shattering in the fields took place whilst the plants still were flowering and 25–35 % during physiological maturity. Seed shattering varied between locations on the Bolivian Altiplano. Cañahua types with the semi‐prostrate growth (‘lasta’) had the highest seed shattering rate in the greenhouse experiments. The Umacutama landrace had lower seed shattering (1 %) than the cultivar Kullaca (7.2 %) both of the ‘lasta’ type. Under field conditions, the cultivar Illimani with the erect growth (‘saihua’) had the highest seed shattering rate (6.4–33.7 %) at both locations and at four different sowing dates. The Umacutama had the lowest rate (0.5–1.5 %). There were no significant differences between plants of the ‘lasta’ and the ‘saihua’ types. The landrace had significantly less seed loss than the cultivars. However, in the greenhouse, the landrace yield was approximately 25 % lower than the yields of the cultivars. In general, cañahua cultivars had higher yield compared to landraces, but also a higher seed shattering rate. Landraces may be used in breeding programmes to develop high‐yielding cultivars with reduced seed shattering.  相似文献   
79.
We investigated nitrous oxide (N2O) emission from an irrigated rice field over two years to evaluate the management of nitrogenous fertiliser and its effect on reducing emissions. Four forms of nitrogenous fertilisers: NPK at the recommended application rate, starch–urea matrix (SUM) + PK, neem‐coated urea + PK and urea alone (urea without coating) were used. Gas samples were collected from the field at weekly intervals with the static chamber technique. N2O emissions from different treatments ranged from 11.58 to 215.81 N2O‐N μg/m2/h, and seasonal N2O emissions from 2.83 to 3.89 kg N2O‐N/ha. Compared with other fertilisers, N2O emissions were greatest after the application of the conventional NPK fertiliser. Moreover, SUM + PK reduced total N2O emissions by 22.33% (< 0.05) compared with NPK during the rice‐growing period (< 0.05). The results indicate a strong correlation between N2O emissions and soil organic carbon, nitrate, ammonium, above‐ and below‐ground plant biomass and photosynthesis (< 0.05). The application of SUM + PK in rice fields is suitable as a means of reducing N2O emissions without affecting grain production.  相似文献   
80.
Although the effects of cover crops (CC) on various soil parameters have been fully investigated, less is known about the impacts at different stages in CC cultivation. The objective of this study was to quantify the influence of CC cultivation stages and residue placement on aggregates and microbial carbon (Cmic). Additionally, the influence of residue location and crop species on CO2 emissions and leached mineralized nitrogen (Nmin) during the plant degradation period was also investigated. Within an incubation experiment, four CC species were sown in soil columns, with additional columns being kept plant‐free. After plant growth, the columns were frozen (as occurs in winter under field conditions) and then incubated with the plant material either incorporated or surface‐applied. With CC, concentrations of large and medium macroaggregates were twice that of the fallow, confirming positive effects of root growth. Freezing led to a decrease in these aggregate size classes. In the subsequent incubation, the large macroaggregates decreased far more in the samples with CC than in the fallow, leading to similar aggregate size distributions. No difference in Cmic concentration was found among the CC cultivation stages. CO2 emissions were roughly equivalent to the carbon amounts added as plant residues. Comparison of columns with incorporated or surface‐applied residues indicated no consistent pattern of aggregate distribution, CO2 emission or Cmic and Nmin concentrations. Our results suggest that positive effects of CC cultivation are only short term and that a large amount of organic material in the soil could have a greater influence than CC cultivation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号