首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10922篇
  免费   2987篇
  国内免费   211篇
林业   336篇
农学   603篇
基础科学   167篇
  2386篇
综合类   878篇
农作物   239篇
水产渔业   2060篇
畜牧兽医   4994篇
园艺   36篇
植物保护   2421篇
  2024年   22篇
  2023年   97篇
  2022年   177篇
  2021年   294篇
  2020年   633篇
  2019年   1125篇
  2018年   937篇
  2017年   1017篇
  2016年   888篇
  2015年   782篇
  2014年   750篇
  2013年   1038篇
  2012年   1261篇
  2011年   874篇
  2010年   742篇
  2009年   474篇
  2008年   472篇
  2007年   375篇
  2006年   305篇
  2005年   313篇
  2004年   263篇
  2003年   240篇
  2002年   202篇
  2001年   186篇
  2000年   198篇
  1999年   83篇
  1998年   64篇
  1997年   69篇
  1996年   51篇
  1995年   38篇
  1994年   42篇
  1993年   28篇
  1992年   24篇
  1991年   24篇
  1990年   8篇
  1989年   13篇
  1988年   5篇
  1987年   4篇
  1985年   1篇
  1962年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
121.
Although the effects of cover crops (CC) on various soil parameters have been fully investigated, less is known about the impacts at different stages in CC cultivation. The objective of this study was to quantify the influence of CC cultivation stages and residue placement on aggregates and microbial carbon (Cmic). Additionally, the influence of residue location and crop species on CO2 emissions and leached mineralized nitrogen (Nmin) during the plant degradation period was also investigated. Within an incubation experiment, four CC species were sown in soil columns, with additional columns being kept plant‐free. After plant growth, the columns were frozen (as occurs in winter under field conditions) and then incubated with the plant material either incorporated or surface‐applied. With CC, concentrations of large and medium macroaggregates were twice that of the fallow, confirming positive effects of root growth. Freezing led to a decrease in these aggregate size classes. In the subsequent incubation, the large macroaggregates decreased far more in the samples with CC than in the fallow, leading to similar aggregate size distributions. No difference in Cmic concentration was found among the CC cultivation stages. CO2 emissions were roughly equivalent to the carbon amounts added as plant residues. Comparison of columns with incorporated or surface‐applied residues indicated no consistent pattern of aggregate distribution, CO2 emission or Cmic and Nmin concentrations. Our results suggest that positive effects of CC cultivation are only short term and that a large amount of organic material in the soil could have a greater influence than CC cultivation.  相似文献   
122.
Susceptibility of crops to drought may change under atmospheric CO2 enrichment. We tested the effects of CO2 enrichment and drought on the older malting barley cultivar Golden Promise (GP) and the recent variety Bambina (BA). Hypothesizing that CO2 enrichment mitigates the adverse effects of drought and that GP shows a stronger response to CO2 enrichment than BA, plants of both cultivars were grown in climate chambers. Optimal and reduced watering levels and two CO2 concentrations (380 and 550 ppm) were used to investigate photosynthetic parameters, growth and yield. In contrast to expectations, CO2 increased total plant biomass by 34 % in the modern cultivar while the growth stimulation was not significant in GP. As a reaction to drought, BA showed reduced biomass under elevated CO2, which was not seen in GP. Grain yield and harvest index (HI) were negatively influenced by drought and increased by CO2 enrichment. BA formed higher grain yield and had higher water‐use efficiency of grain yield and HI compared to GP. CO2 fertilization compensated for the negative effect of drought on grain yield and HI, especially in GP. Stomatal conductance proved to be the gas exchange parameter most sensitive to drought. Photosynthetic rate of BA showed more pronounced reaction to drought compared to GP. Overall, BA turned out to respond more intense to changes in water supply and CO2 enrichment than the older GP.  相似文献   
123.
Salinity reduces crop yield by limiting water uptake and causing ion‐specific stress. Soybean [Glycine max (L.) Merr.] is sensitive to soil salinity. However, there is variability among soybean genotypes and wild relatives for salt tolerance, suggesting that genetic improvement may be possible. The objective of this study was to identify differences in salt tolerance based on ion accumulation in leaves, stems and roots among accessions of four Glycine species. Four NaCl treatments, 0, 50, 75 and 100 mm , were imposed on G. max, G. soja, G. tomentella and G. argyrea accessions with different levels of salinity tolerance. Tolerant genotypes had less leaf scorch and a greater capacity to prevent Na+ and Cl? transport from soil solution to stems and leaves than sensitive genotypes. Magnitude of leaf injury per unit increase in leaf Na+ or Cl? concentrations was lower in tolerant than in susceptible accessions. Also, plant injury was associated more with Na+ rather than with Cl? concentration in leaves. Salt‐tolerant accessions had greater leaf chlorophyll‐meter readings than sensitive genotypes at all NaCl concentrations. Glycine argyrea and G. tomentella accessions possessed higher salt tolerance than G. soja and G. max genotypes.  相似文献   
124.
Terminal drought is threatening the wheat productivity worldwide, which is consumed as a staple food by millions across the globe. This study was conducted to examine the influence of foliage‐applied stress signalling molecules hydrogen peroxide (H2O2; 50, 100, 150 μm ) and nitric oxide donor sodium nitroprusside (SNP; 50, 100, 150 μm ) on resistance against terminal drought in two bread wheat cultivars Mairaj‐2008 and BARS‐2009. These stress signalling molecules were applied at anthesis stage (BBCH 61); drought was then imposed by maintaining pots at 35% water holding capacity. Terminal drought caused significant reduction in grain yield of both tested bread wheat cultivars; however, foliage application of both stress signalling molecules at either concentration improved the performance of both bread wheat cultivars. Maximum improvement in 100‐grain weight (12.2%), grains per spike (19.7%), water‐use efficiency (WUE; 19.8%), chlorophyll content index (10.7%), total soluble phenolics (21.6%) and free leaf proline (34.3%), and highest reduction in leaf malondialdehyde contents (20.4%) was recorded when H2O2 was foliage‐applied at 100 μm . Foliage application of SNP enhanced the grains per spike, 100‐grain weight and grain yield by 14.9%, 11.3% and 20.1%, respectively, than control. The foliage‐applied stress signalling molecules improved the accumulation of soluble phenolics, proline and glycine betaine with simultaneous reduction in malondialdehyde contents, which enabled wheat plants to sustain the biological membranes under stress resulting in better stay green (high chlorophyll contents) under drought. This helped improving the grain number, grain weight, grain yield, WUE and transpiration efficiency. In crux, foliage‐applied H2O2 and SNP, at pre‐optimized rate, may be opted to lessen the drought‐induced yield losses in bread wheat in climate change conditions.  相似文献   
125.
Changes to water‐level regimes have been known to restructure fish assemblages and interfere with the population dynamics of both littoral and pelagic species. The effect of altered water‐level regimes on shore‐spawning kokanee Oncorhynchus nerka incubation success was evaluated using a comprehensive in situ study in Lake Pend Oreille, ID, USA. Survival was not related to substrate size composition or depth, indicating that shore‐spawning kokanee do not currently receive a substrate‐mediated survival benefit from higher winter water levels. Substrate composition also did not differ among isobaths in the nearshore area. On average, the odds of an egg surviving to the preemergent stage were more than three times greater for sites in downwelling areas than those lacking downwelling. This study revealed that shoreline spawning habitat is not as limited as previously thought. Downwelling areas appear to contribute substantially to shore‐spawning kokanee recruitment. This research illustrates the value of rigorous in situ studies both for testing potential mechanisms underlying population trends and providing insight into spawning habitat selection.  相似文献   
126.
Two 60‐day experiments were conducted sequentially to determine (i) lysine requirement of juvenile bluegill, Lepomis macrochirus based on the dose–response method, (ii) requirements for other essential amino acids (EAAs) using whole‐body amino acid profile and (iii) whether differences in growth rates of group‐housed versus individually‐housed bluegills lead to different lysine requirement levels because of the presence and absence, respectively, of social hierarchies. Seven, semi‐purified, experimental diets (isonitrogenous, isocaloric) were prepared to contain graded levels of digestible lysine (10–31 g kg−1). Experiment‐1 involved group‐housed bluegills (approximately 27 g, n = 10 fish/chamber, 4 chambers/diet) whereas experiment‐2 involved individually‐housed bluegills (approximately 30 g, n = 1 fish/chamber, 14 chambers/diet). Fish were fed twice daily to apparent satiation. Bluegill growth responses in both experiments generally improved (P < 0.05, anova ) with increasing dietary lysine levels from 10 to 16 g kg−1, and then levelled off with further increase in lysine level (P > 0.05). Optimal dietary lysine level (digestible basis) was estimated to be 15 g kg−1 based on broken‐line regression analyses of relative growth rate and feed conversion ratio with no differences being observed between the two rearing methods. Determined dietary requirement levels for other EAAs ranged from 2.4 g kg−1 (tryptophan) to 15.3 g kg−1 (leucine).  相似文献   
127.
重庆市温泉资源丰富,温泉洗浴废水运用于绿地灌溉可以节约成本,缓解城市的水危机。温泉洗浴废水对植物生长有正负两方面的影响,与植物的种类,温泉洗浴废水的水质等因素有关。实验以重庆市常见的两种绿地植物——冷水花木春菊为研究对象,对温泉洗浴废水中影响植物生长的pH、固体悬浮物、高锰酸钾,总溶解性固体4个常见指标进行了浓度值对比实验。运用对相对电导率拟合Logistic方程求半致死浓度值的方法,确定绿地植物所能耐受的上限阀值。以此为基础对温泉废水进行相关处理,使温泉废水既可以达到灌溉绿地的水质标准,又能最大限度地降低废水处理成本,从而充分利用水资源。  相似文献   
128.
Nitrogen (N) leaching from soil into water is a significant concern for intensively grazed forage‐based systems because it can cause a decline in water quality and is a risk to human health. Urine patches from grazing animals are the main source of this N. The objective of this study was to quantify the effect that forage type and gibberellic acid (GA) application had on N leaching and herbage N uptake from urine patches on perennial ryegrass–white clover (RGWC), Italian ryegrass and lucerne. A lysimeter study was conducted over 17 months to measure herbage growth, N uptake and N loss to water beneath each of the three forage types with the following treatments: control, urine (700 kg N/ha) and urine with GA (8 g GA active ingredient/ha). Compared with RGWC (205 kg N/ha), N leaching losses were 35.3% lower from Italian ryegrass (133 kg N/ha) and 98.5% higher from lucerne (407 kg N/ha). These differences in leaching loss are likely to be due to winter plant growth and N uptake. During the winter months, Italian ryegrass had higher N uptake, whereas lucerne had lower N uptake, compared with RGWC. The application of GA had no effect on N leaching losses, DM yield or N uptake of forage treated with 700 kg N/ha urine.  相似文献   
129.
张伟  何俊皓  郝文芳 《草业科学》2016,33(7):1391-1402
以吴起县杨青川流域草地为研究对象,对封育(Enclosure)、放牧(Grazing)、施肥(Fertilization)、刈割(Clipping)、灭鼠(Deratization)5种管理方式的草地群落进行调查,并运用Levins生态位宽度和Pianka生态位重叠指数对5种管理方式下主要植物种群生态位特征进行分析。结果表明,达乌里胡枝子(Lespedeza davurica)、铁杆蒿(Artemisia sacrorum)、赖草(Leymus secalinus)、猪毛蒿(Artemisia scoparia)和硬质早熟禾(Poa sphondylodes)的种群总生态位宽度较大,封育放牧施肥刈割灭鼠管理模式下,生态位宽度最大的分别是达乌里胡枝子、赖草、紫花地丁(Viola philippica)、达乌里胡枝子和猪毛蒿,生态位宽度值大于4的物种数分别为6、6、3、4和3种。不同管理方式下各种对间的重叠指数平均值由大到小依次封育放牧施肥刈割灭鼠。施肥管理中,种群间生态位宽度与生态位重叠之间存在线性关系,其它管理方式中种群生态位宽度与生态位重叠之间不存在线性关系。生态位分析表明,封育和放牧管理下种群间对资源的需求趋于相同,彼此间通过竞争共存,有利于群落演替,草地生态系统逐渐得到恢复,施肥、刈割、灭鼠管理使群落物种竞争排序发生变化,破坏了草地生态系统原有的竞争机制,导致群落向简单群落演替。从牧草发展角度出发,封育、施肥和刈割有利于优质牧草生长。  相似文献   
130.
Biochar addition can expand soil organic carbon (SOC) stock and has potential ability in mitigating climate change. Also, some incubation experiments have shown that biochar can increase soil inorganic carbon (SIC) contents. However, there is no direct evidence for this from the field experiment. In order to make up the sparseness of available data resulting from the long‐term effect of biochar amendment on soil carbon fractions, here we detected the contents and stocks of the bulk SIC and SOC fractions based on a 10‐year field experiment of consecutive biochar application in Shandong Province, China. There are three biochar treatments as no‐biochar (control), and biochar application at 4.5 Mg ha?1 year?1 (B4.5) and 9.0 Mg ha?1 year?1 (B9.0), respectively. The results showed that biochar application significantly enhanced SIC content (3.2%–24.3%), >53 μm particulate organic carbon content (POC, 38.2%–166.2%) and total soil organic carbon content (15.8%–82.2%), compared with the no‐biochar control. However, <53 μm silt–clay‐associated organic carbon (SCOC) content was significantly decreased (14%–27%) under the B9.0 treatment. Our study provides the direct field evidence that SIC contributed to carbon sequestration after the biochar application, and indicates that the applied biochar was allocated mainly in POC fraction. Further, the decreased SCOC and increased microbial biomass carbon contents observed in field suggest that the biochar application might exert a positive priming effect on native soil organic carbon.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号