首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8289篇
  免费   3038篇
  国内免费   182篇
林业   262篇
农学   525篇
基础科学   32篇
  1619篇
综合类   606篇
农作物   170篇
水产渔业   2365篇
畜牧兽医   4053篇
园艺   54篇
植物保护   1823篇
  2024年   13篇
  2023年   40篇
  2022年   87篇
  2021年   253篇
  2020年   586篇
  2019年   1068篇
  2018年   873篇
  2017年   975篇
  2016年   770篇
  2015年   707篇
  2014年   667篇
  2013年   966篇
  2012年   1093篇
  2011年   714篇
  2010年   634篇
  2009年   333篇
  2008年   347篇
  2007年   219篇
  2006年   211篇
  2005年   183篇
  2004年   151篇
  2003年   126篇
  2002年   116篇
  2001年   109篇
  2000年   123篇
  1999年   32篇
  1998年   19篇
  1997年   14篇
  1996年   17篇
  1995年   8篇
  1994年   8篇
  1993年   8篇
  1992年   7篇
  1991年   9篇
  1990年   2篇
  1989年   9篇
  1988年   4篇
  1987年   1篇
  1982年   1篇
  1978年   1篇
  1974年   1篇
  1956年   3篇
  1955年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
993.
994.
995.
996.
Immunoglobulin G4‐related disease (IgG4‐RD), which affects many organ systems, has been recognized as a distinct clinical entity in human medicine for just over a decade but has not been previously identified in dogs. In humans, IgG4‐RD is characterized by diffuse IgG4‐positive lymphoplasmacytic infiltrates that commonly lead to increased serum concentrations of IgG4 and IgE, peripheral eosinophilia, tumorous swellings that often include the parotid salivary glands, obliterative phlebitis, and extensive fibrosis. Herein we describe the diagnosis, clinical progression, and successful treatment of IgG4‐RD in an 8‐year‐old female spayed Husky mixed breed dog. Immunoglobulin G4‐related disease should be considered as a differential diagnosis for dogs with vague clinical signs, lymphoplasmacytic swellings, restricted polyclonal gammopathy, eosinophilia or some combination of these findings.  相似文献   
997.
998.
The present study was conducted to verify how feed restriction affects gut microbiota and gene hepatic expression in broiler chickens and how these variables are related to body weight gain. For the experiment, 21‐d‐old Cobb500TM birds were distributed in a completely randomized experimental design with three treatments: T1. Control (ad libitum—3.176 Mcal/kg ME—metabolizable energy—and 19% CP—crude protein); T2. Energetic restriction (2.224 Mcal/kg ME and 19% CP) from 22 to 42 days with consumption equivalent to control; T3. Quantitative restriction (70% restriction, i.e., restricted broilers ingested only 30% of the quantity consumed by the control group—3.176 Mcal/kg ME and 19% CP) for 7 days, followed by refeeding ad libitum from 28 to 42 days. Ileum and caecum microbiota collections were made at 21, 28 and 42 days of age. Hepatic tissue was collected at 28 and 42 days old for relative gene expression analyses. At 43‐d‐old, body composition was quantified by DXA (Dual‐energy X‐ray Absorptiometry). Both feed restriction programmes decreased Lactobacillus and increased Enterococcus and Enterobacteriaceae counts. No differences were found in the refeeding period. Energetic restriction induced the expression of CPT1‐A (Carnitine palmitoyltransferase 1A) gene, and decreased body fat mass. Quantitative feed restriction increased lipogenic and decreased lipolytic gene expression. In the refeeding period, CPT1‐A gene expression was induced, without changing the broilers body composition. Positive associations were found between BWG (Body Weight Gain) and Lactobacillus and Clostridium cluster IV groups, and negatively associations with Enterobacteriaceae and Enterococcus bacterial groups. In conclusion, differences found in microbiota were similar between the two feed restriction programmes, however, hepatic gene expression differences were only found in quantitative restriction. Higher counts of Lactobacillus and Clostridium cluster IV groups in ileum are likely to be related to better broiler performance and low expression of lipogenic genes.  相似文献   
999.
This study was to investigate the effects of Epigallocatechin‐3‐gallate (EGCG) on intestinal morphology, antioxidant capacity and anti‐inflammatory response in heat‐stressed broiler. A total of 192 2‐week‐old Arbour Acres broilers chickens were divided into four groups with six replicates per group and eight chickens per replicate: one thermoneutral control group (28°C, group TN), which was fed the basal diet; and three cyclic high‐temperature groups (35°C from 7:00 to 19:00 hr; 28°C from 19:00 hr to 7:00 hr, heat stress group), which were fed the basal diet supplementation with EGCG 0 mg/kg (group HS0), 300 mg/kg (group HS300) and 600 mg/kg (group HS600). The gut morphology and intestinal mucosal oxidative stress indicators, as well as intestinal barrier‐related gene expression, were analysed. The results showed that compared with group TN, heat stress reduced the villus height (VH), activities of glutathione peroxidase (GSH‐Px), superoxide dismutase (SOD)and catalase (CAT), increased the crypt depth (CD) and malondialdehyde (MDA)content at 21, 28 and 35 days (p < 0.05). After the heat‐stressed broilers were supplemented with EGCG, VH, VH/CD (V/C), and the activities of GSH‐Px, SOD and CAT were increased, and CD and MDA content were reduced compared with those in group HS0 without EGCG supplementation at 21, 28 and 35 days (p < 0.05). The EGCG supplementation promoted the gene expression of nuclear factor‐erythroid 2‐related factor 2 (Nrf2), Claudin‐1, Mucin 2 (Muc2) and alleviated the nuclear factor‐kappa B (NF‐κB) and lipopolysaccharide‐induced tumour necrosis factor (LITAF) gene expression compared with group HS0 (p < 0.05). Moreover, intestinal morphology was strongly correlated with antioxidant ability and inflammatory response. In conclusion, EGCG alleviated the gut oxidative injury of heat‐stressed broilers by enhancing antioxidant capacity and inhibiting inflammatory response.  相似文献   
1000.
This study aimed to evaluate the effects of dietary supplemental methionine (Met) source and betaine (Bet) replacement for Met on performance and activity of mitochondrial respiratory chain enzymes (MRCEs) in normal and heat‐stressed broiler chickens. Total of 1,200‐day‐old Ross 308 chicks were allocated to two houses, each consisted of 12 treatments, five replicates of 10 birds each with 2 × 2×3 × 2 (temperature × Met source × Met level × Bet, respectively) split‐plot factorial arrangement. Met level in the basal diets was 70% requirements (Req) that was increased to the requirement or 130% by supplemental dl ‐ or l ‐Met. Bet was or was not substituted at the rate of 30% supplemental dl ‐ or l ‐Met. Feed conversion ratio (FCR) in chicks fed 70% l ‐Met was lower than those fed 70% dl ‐Met diet during 1–10 days (p = 0.04). Broilers fed diets containing requirement or 130% Met, regardless of its source, showed higher weight gain (WG) than those received 70% Met diet during 11–42 days (p < 0.001). Feed intake (FI) of broilers fed 130% Met diet was decreased compared to other two groups during 11–42 days (p < 0.05). One hundred thirty percent Met requirement diet resulted in lower FCR comparing to other two groups during 11–42 days (p < 0.001). Heat‐stressed birds grew less than those under normal condition (p < 0.05). Broilers fed Req Met diet under normal temperature exhibited higher activities of complexes (Cox) I and III (p < 0.05). Cox I activity in heat‐stressed birds fed Bet + diet was similar to those fed Bet‐diet under normal temperature (p = 0.046). It is concluded that performance and the activities of Cox I and III were increased as the level of Met increased. Bet replacement for 30% supplemental Met resulted in similar consequences comparing to non‐Bet replacement diets on performance, but increased the activity of Cox III. l ‐Met was effective than dl ‐Met at the cellular level. High ambient temperature depressed performance and MRCE activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号