首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   24篇
  国内免费   1篇
综合类   8篇
水产渔业   1篇
畜牧兽医   107篇
  2022年   1篇
  2021年   6篇
  2020年   3篇
  2019年   7篇
  2018年   9篇
  2017年   10篇
  2016年   7篇
  2015年   6篇
  2014年   8篇
  2013年   9篇
  2012年   5篇
  2011年   5篇
  2010年   4篇
  2009年   2篇
  2008年   6篇
  2007年   1篇
  2006年   1篇
  2005年   5篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   3篇
  1999年   3篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1989年   2篇
  1977年   1篇
排序方式: 共有116条查询结果,搜索用时 281 毫秒
71.
The purpose of the study was to determine pharmacokinetics of fentanyl after intravenous (i.v.) and transdermal (t.d.) administration to six adult alpacas. Fentanyl was administered i.v. (2 μg/kg) or t.d. (nominal dose: 2 μg kg?1 hr?1). Plasma concentrations were determined using liquid chromatography–mass spectrometry. Heart rate and respiratory rate were assessed. Extrapolated, zero‐time plasma fentanyl concentrations were 6.0 ng/ml (1.7–14.6 ng/ml) after i.v. administration, total plasma clearance was 1.10 L hr?1 kg?1 (0.75–1.40 L hr?1 kg?1), volumes of distribution were 0.30 L/kg (0.10–0.99 L/kg), 1.10 L/kg (0.70–2.96 L/kg) and 1.5 L/kg (0.8–3.5 L/kg) for V1, V2, and Vss, respectively. Elimination half‐life was 1.2 hr (0.5–4.3 hr). Mean residence time (range) after i.v. dosing was 1.30 hr (0.65–4.00 hr). After t.d. fentanyl administration, maximum plasma fentanyl concentration was 1.20 ng/ml (0.72–3.00 ng/ml), which occurred at 25 hr (8–48 hr) after patch placement. The area under the plasma fentanyl concentration‐vs‐time curve (extrapolated to infinity) after t.d. fentanyl was 61 ng*hr/ml (49–93 ng*hr/ml). The dose‐normalized bioavailability of fentanyl from t.d. fentanyl in alpacas was 35.5% (27–64%). Fentanyl absorption from the t.d. fentanyl patch into the central compartment occurred at a rate of approximately 50 μg/hr (29–81 μg/hr) between 8 and 72 hr after patch placement.  相似文献   
72.

Objective

To characterize a propofol–medetomidine-ketamine total intravenous anaesthetic in impala (Aepyceros melampus).

Study design

Prospective clinical study.

Animals

Ten adult female impala.

Materials and methods

Impala were immobilized at 1253 m above sea level with 2.0 mg thiafentanil and 2.2 mg medetomidine via projectile darts. Propofol was given to effect (0.5 mg kg?1 boluses) to allow endotracheal intubation, following which oxygen was supplemented at 2 L minute?1. Anaesthesia was maintained with a constant-rate infusion of medetomidine and ketamine at 5 μg kg?1 hour?1 and 1.5 mg kg?1 hour?1, respectively, and propofol to effect (initially 0.2 mg kg?1 minute?1) for 120 minutes. The propofol infusion was titrated according to reaction to nociceptive stimuli every 15 minutes. Cardiopulmonary parameters were monitored continuously and arterial blood gas samples were analysed intermittently. After 120 minutes' maintenance, the thiafentanil and medetomidine were antagonized using naltrexone (10:1 thiafentanil) and atipamezole (5:1 medetomidine), respectively.

Results

All impala were successfully immobilized. The median dose [interquartile range (IQR)] of propofol required for intubation was 2.7 (1.9–3.3) mg kg?1. The propofol–medetomidine–ketamine combination abolished voluntary movement and ensured anaesthesia for the 120 minute period. Propofol titration showed a generally downward trend. Median (IQR) heart rate [57 (53–61) beats minute?1], respiratory rate [10 (9–12) breaths minute?1] and mean arterial blood pressure [101 (98–106) mmHg] were well maintained. Arterial blood gas analysis indicated hypoxaemia, hyper- capnia and acidaemia. Butorphanol (0.12 mg kg?1) was an essential rescue drug to counteract thiafentanil-induced respiratory depression. All impala regurgitated frequently during the maintenance period. Recovery was calm and rapid in all animals. Median (IQR) time to standing from antagonist administration was 4.4 (3.2–5.6) minutes.

Conclusions and clinical relevance

A propofol–medetomidine–ketamine combination could provide adequate anaesthesia for invasive procedures in impala. The propofol infusion should begin at 0.2 mg kg?1 minute?1 and be titrated to clinical effect. Oxygen supplementation and airway protection with a cuffed endotracheal tube are essential.  相似文献   
73.
This study was designed to improve the clinical feasibility of intradermal skin testing of psittacine birds using intravenous fluorescein stain. Twenty-five healthy, anaesthetized Hispaniolan Amazon parrots (Amazona ventralis) were injected intravenously with 10 mg kg-1 fluorescein-sodium 1% followed by intradermal injections of 0.02 mL phosphate-buffered saline, histamine phosphate (1:100,000 w/v) and codeine phosphate (1:100,000 w/v) at the sternal apteria. Wheal diameters of reaction sites were measured grossly and under illumination with a Wood's lamp after 5 and 10 min. Fluorescence-enhanced injection sites were scored between 0 and 2, with 0 equivalent to normal skin and 2 equivalent to a plucked feather follicle. The presence of a fluorescent halo around intradermal injections was also recorded. Under Wood's light illumination at 10 min, histamine and saline were evaluated as positive and negative controls, respectively, based on a positive test having a halo and a score of 2. Sensitivity and specificity were each 76% for halo, 84 and 42% for score and 64 and 77% for combination of score and halo, respectively. Further, mean histamine reactions were significantly larger than codeine phosphate and saline (8.8 +/- 0.4 mm; 7.2 +/- 0.3 mm; 5.9 +/- 0.6 mm); however, this finding was not consistent in individual birds. Wheal size, halo presence and score were affected by site location independent from the injected compound. Intravenous fluorescein improved the readability of avian skin tests; however, the compounds tested raised inconsistent reactions in wheal size, score or halo presence. The compound-independent site effect raises concern on the validity of avian skin testing and warrants investigation of other techniques such as in vitro allergy testing. Based on our findings, intradermal allergy testing in psittacines with or without fluorescein is unreliable and cannot be recommended for practical clinical use.  相似文献   
74.
75.
76.
ObjectiveTo investigate the cardiorespiratory, nociceptive and endocrine effects of the combination of propofol and remifentanil, in dogs sedated with acepromazine.Study designProspective randomized, blinded, cross-over experimental trial.AnimalsTwelve healthy adult female cross-breed dogs, mean weight 18.4 ± 2.3 kg.MethodsDogs were sedated with intravenous (IV) acepromazine (0.05 mg kg?1) followed by induction of anesthesia with IV propofol (5 mg kg?1). Anesthesia was maintained with IV propofol (0.2 mg kg?1 minute?1) and remifentanil, infused as follows: R1, 0.125 μg kg?1 minute?1; R2, 0.25 μg kg?1 minute?1; and R3, 0.5 μg kg?1 minute?1. The same dogs were administered each dose of remifentanil at 1-week intervals. Heart rate (HR), mean arterial pressure (MAP), respiratory rate (fR), end tidal CO2 (Pe′CO2), arterial hemoglobin O2 saturation, blood gases, and rectal temperature were measured before induction, and 5, 15, 30, 45, 60, 75, 90, and 120 minutes after beginning the infusion. Nociceptive response was investigated by electrical stimulus (50 V, 5 Hz and 10 ms). Blood samples were collected for plasma cortisol measurements. Statistical analysis was performed by anova (p < 0.05).ResultsIn all treatments, HR decreased during anesthesia with increasing doses of remifentanil, and increased significantly immediately after the end of infusion. MAP remained stable during anesthesia (72–98 mmHg). Antinociception was proportional to the remifentanil infusion dose, and was considered satisfactory only with R2 and R3. Plasma cortisol concentration decreased during anesthesia in all treatments. Recovery was smooth and fast in all dogs.Conclusions and clinical relevanceInfusion of 0.25–0.5 μg kg?1 minute?1 remifentanil combined with 0.2 mg kg?1 minute?1 propofol produced little effect on arterial blood pressure and led to a good recovery. The analgesia produced was sufficient to control the nociceptive response applied by electrical stimulation, suggesting that it may be appropriate for performing surgery.  相似文献   
77.
为了筛选适合于贵州黑山羊胚胎移植手术的麻醉方法,试验以贵州黑山羊为试验动物,比较了速眠新Ⅱ注射液2种麻醉方法(肌肉麻醉和静脉麻醉)对山羊生理指标,麻醉山羊的诱导期、麻醉期、苏醒期,麻醉苏醒后山羊的采食、反刍及精神状况的影响。结果表明:2种麻醉方法下,麻醉效果优、良的山羊数量和生理指标无明显差异;速眠新Ⅱ注射液静脉注射麻醉时,山羊的诱导期、麻醉期和苏醒期均较短,在苏醒后0.5 h,90.0%的山羊可以采食,83.3%的山羊可以反刍,93.3%的山羊精神状况良好;苏醒后1 h基本上全部可以恢复正常;采用静脉注射麻醉山羊进行胚胎移植手术,速眠新Ⅱ注射液用药剂量小,且安全、有效,明显优于肌肉注射。  相似文献   
78.
用体层低张静脉尿路造影技术,对110例有泌尿系统疾病患者作了检查,成功率为98%。本法的优点不但有效地解决了传统操作中因腹部加压不当造影易失败和给病人带来的痛苦,且对肾脏,膀胱像显示加清晰。本法对提高泌尿系统疾病的诊断水平有重要价值。  相似文献   
79.
80.
Mammary gland growth and morphogenesis are regulated by interactions between hormones as much as by their individual actions. The effect of these interactions on the mammary gland phenotype in species other than rodents is relatively undefined. We investigated the individual and combined effects of estrogen (E), progestin (P), and prolactin (PRL) on mammary gland development in gilts. Pigs were shown to have a ductal-lobular parenchyma that underwent hormone-stimulated progression of terminal ductal lobular unit (TDLU) morphogenesis similar to that in the human breast. Ovariectomy plus hypoprolactinemia abolished mammary gland growth. Estrogen alone stimulated mammary epithelial cell proliferation, terminal bud formation, and the progression of TDLU1 structures to a TDLU2 morphotype. Maximal epithelial cell proliferation, DNA content, parenchymal area, and morphological development of the porcine mammary gland were realized following treatment with E + PRL or E + P + PRL. In contrast, P alone did not promote epithelial cell proliferation, TDLU type progression, mammary gland growth, or morphogenesis. These data indicate that interactions between E and PRL are the main determinants of growth and morphogenesis in the porcine mammary gland.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号