首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6390篇
  免费   2753篇
  国内免费   5篇
林业   125篇
农学   520篇
基础科学   1篇
  1483篇
综合类   60篇
农作物   159篇
水产渔业   2072篇
畜牧兽医   2901篇
园艺   3篇
植物保护   1824篇
  2024年   2篇
  2023年   2篇
  2021年   116篇
  2020年   478篇
  2019年   912篇
  2018年   795篇
  2017年   851篇
  2016年   665篇
  2015年   620篇
  2014年   571篇
  2013年   835篇
  2012年   960篇
  2011年   561篇
  2010年   495篇
  2009年   231篇
  2008年   242篇
  2007年   112篇
  2006年   100篇
  2005年   101篇
  2004年   97篇
  2003年   94篇
  2002年   86篇
  2001年   86篇
  2000年   101篇
  1999年   5篇
  1998年   2篇
  1997年   1篇
  1996年   5篇
  1995年   4篇
  1994年   3篇
  1992年   3篇
  1991年   1篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1955年   1篇
排序方式: 共有9148条查询结果,搜索用时 15 毫秒
51.
52.
53.
54.
Systemicity of agrochemicals is an advantageous property for controlling phloem sucking insects, as well as pathogens and pests not accessible to contact products. After the penetration of the cuticle, the plasma membrane constitutes the main barrier to the entry of an agrochemical into the sap flow. The current strategy for developing systemic agrochemicals is to optimize the physicochemical properties of the molecules so that they can cross the plasma membrane by simple diffusion or ion trapping mechanisms. The main problem with current systemic compounds is that they move everywhere within the plant, and this non‐controlled mobility results in the contamination of the plant parts consumed by vertebrates and pollinators. To achieve the site‐targeted distribution of agrochemicals, a carrier‐mediated propesticide strategy is proposed in this review. After conjugating a non‐systemic agrochemical with a nutrient (α‐amino acids or sugars), the resulting conjugate may be actively transported across the plasma membrane by nutrient‐specific carriers. By applying this strategy, non‐systemic active ingredients are expected to be delivered into the target organs of young plants, thus avoiding or minimizing subsequent undesirable redistribution. The development of this innovative strategy presents many challenges, but opens up a wide range of exciting possibilities. © 2018 Society of Chemical Industry  相似文献   
55.
The objective of this study was to examine the effect of sampling technique (pluck or cut), storage duration (immediate analysis, 24‐h or 48‐h), storage temperature (ambient or chilled) and storage conditions (air present, air excluded or breathable) on the composition of fresh grass sampled from a sward managed to simulate grazing. Treatments were repeated across four sampling dates, with grass samples stored in grip seal bags prior to analysis using near‐infrared reflectance spectroscopy. Grass sampled by ‘pluck’ had a higher crude protein and ME content, and a lower acid detergent fibre (ADF) content, compared to that sampled by ‘cut’. Grass stored for 48 h had a lower water soluble carbohydrate (WSC) and ME content and a higher ADF content than for immediate analysis. Samples stored for 24 h did not differ from immediate analysis. Grass stored at ambient temperature had a lower WSC and ME content compared to immediate analysis. Grass stored under ‘breathable’ conditions had a lower ME content and higher ADF content than immediate analysis or samples stored with air present or air excluded. It is recommended that grass for analysis should be sampled by cutting, stored chilled (4°C) in a sealed bag to minimize exposure to oxygen and analysed within 24 h of harvest.  相似文献   
56.
Soybean lodging can result in serious yield reduction. Detecting the quantitative trait loci (QTL) associated with lodging tolerance for their further application in marker‐assisted selection (MAS) has the potential to enhance soybean breeding efficiency. In this study, a genome‐wide association analysis (GWAS) was performed to identify soybean accessions that could potentially be used to produce lodging‐tolerant varieties, based on the comprehensive evaluation of lodging scores (LS) obtained for the parental cultivar “Tokachi nagaha” and its 137 derived cultivars. Results showed that genotype, environment and genotype × environment interaction significantly influenced LS. Of the 31 significant SNPs identified, 22 were consistently detected in two or more environments and 27 SNPs were located in or close to agronomically important QTL mapped by linkage analysis. Best linear unbiased predictors (BLUPs) of LS tend to decrease with the elite alleles contained by accessions increasing. Some excellent accessions, with lower BLUPs and Di (stability coefficients) values and more elite alleles, were selected. This study contributed to understand the genetic mechanism of lodging, providing genetic and phenotypic information for MAS.  相似文献   
57.
Intensive vegetable production in greenhouses has rapidly expanded in China since the 1990s and increased to 1.3 million ha of farmland by 2016, which is the highest in the world. We conducted an 11‐year greenhouse vegetable production experiment from 2002 to 2013 to observe soil organic carbon (SOC) dynamics under three management systems, i.e., conventional (CON), integrated (ING), and intensive organic (ORG) farming. Soil samples (0–20 and 20–40 cm depth) were collected in 2002 and 2013 and separated into four particle‐size fractions, i.e., coarse sand (> 250 µm), fine sand (250–53 µm), silt (53–2 µm), and clay (< 2 µm). The SOC contents and δ13C values of the whole soil and the four particle‐size fractions were analyzed. After 11 years of vegetable farming, ORG and ING significantly increased SOC stocks (0–20 cm) by 4008 ± 36.6 and 2880 ± 365 kg C ha?1 y?1, respectively, 8.1‐ and 5.8‐times that of CON (494 ± 42.6 kg C ha?1 y?1). The SOC stock increase in ORG at 20–40 cm depth was 245 ± 66.4 kg C ha?1 y?1, significantly higher than in ING (66 ± 13.4 kg C ha?1 y?1) and CON (109 ± 44.8 kg C ha?1 y?1). Analyses of 13C revealed a significant increase in newly produced SOC in both soil layers in ORG. However, the carbon conversion efficiency (CE: increased organic carbon in soil divided by organic carbon input) was lower in ORG (14.4%–21.7%) than in ING (18.2%–27.4%). Among the four particle‐sizes in the 0–20 cm layer, the silt fraction exhibited the largest proportion of increase in SOC content (57.8% and 55.4% of the SOC increase in ORG and ING, respectively). A similar trend was detected in the 20–40 cm soil layer. Over all, intensive organic (ORG) vegetable production increases soil organic carbon but with a lower carbon conversion efficiency than integrated (ING) management.  相似文献   
58.
59.
述,在小麦田禾本科杂草2~5叶期、阔叶杂草2~4叶期,用50 g/L炔草酸·唑啉草酯乳油 30~60 g/hm2(有效成分),对水450 L喷施,对小麦田杂草高效,对小麦安全.  相似文献   
60.
通过分析、总结长期试验的研究进展,研究长期试验的特点、意义和研究内容,综述了长期试验对土壤理化性质、土壤微生物量的影响,有助于该学科研究的纵深发展与广泛利用.目前,长期试验通常采取2种方法,分别是“长期”和“定位”,其具有时间的长期性和气候的重复性等特点,能够克服各种生态因素差异对试验带来的影响和制约;其与土壤理化性状和微生物特性等关系密切,对研究农业生产有着重要的科学价值,为不同措施对土壤性质的影响提供研究场所.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号