首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4215篇
  免费   242篇
  国内免费   428篇
林业   784篇
农学   290篇
基础科学   403篇
  755篇
综合类   1937篇
农作物   84篇
水产渔业   62篇
畜牧兽医   196篇
园艺   252篇
植物保护   122篇
  2024年   57篇
  2023年   202篇
  2022年   215篇
  2021年   164篇
  2020年   179篇
  2019年   180篇
  2018年   119篇
  2017年   185篇
  2016年   202篇
  2015年   168篇
  2014年   247篇
  2013年   227篇
  2012年   349篇
  2011年   328篇
  2010年   295篇
  2009年   283篇
  2008年   224篇
  2007年   236篇
  2006年   196篇
  2005年   129篇
  2004年   129篇
  2003年   79篇
  2002年   79篇
  2001年   60篇
  2000年   50篇
  1999年   41篇
  1998年   34篇
  1997年   31篇
  1996年   26篇
  1995年   26篇
  1994年   26篇
  1993年   17篇
  1992年   20篇
  1991年   19篇
  1990年   21篇
  1989年   23篇
  1988年   12篇
  1987年   5篇
  1986年   2篇
排序方式: 共有4885条查询结果,搜索用时 15 毫秒
81.
[目的] 分析FAST (中国天眼)工程周边的贵州省平塘县、惠水县、罗甸县的土地利用类型和空间变化,探讨土地利用变化与生态环境的关系,为FAST工程周边的生态环境保护和改善提供科学参考。[方法] 以2000,2005,2010,2013和2017年5期TM遥感影像数据为基础,运用RS和GIS技术解译遥感影像数据获取惠水县、罗甸县、平塘县“三生”空间的土地利用数据,计算区域生态环境质量指数及其生态贡献率,分析研究区近20 a土地利用功能演变特征及区域生态环境响应状况。[结果] ①FAST周边林地面积比例最大,但呈减少的趋势。研究区土地利用面积表现为:生态用地>生产用地>生活用地,但生活和生产用地面积增加,分别由1 661.74和12.84 km2增加到1 674.07和25.66 km2,生态用地面积则由6 610.55 km2减少到6 590.86 km2。②FAST工程建设加速土地利用类型的转变,促使FAST周边林地生态用地、草地生态用地、农业生产用地、水域生态用地相互转换,其中林地生态用地的转出面积最大,占转出面积的46.14%。③FAST周边的生态环境质量指数由0.471 0下降到0.468 1,生态环境呈现下降的趋势,FAST周边的发展促使高生态环境土地利用转向低生态环境土地利用类型。[结论] FAST周边的生态环境与土地利用变化存在耦合关系,生态环境质量随生态用地向生产、生活用地转变呈现下降趋势。提高FAST周边生态用地质量,有助于FAST工程的安全运行。  相似文献   
82.
为解决机器视觉对早期玉米苗带在多环境变量下导航线提取耗时长、准确率低的问题,该研究提出了一种基于中值点Hough变换作物行检测的导航线提取算法。首先,改进了传统的2G-R-B算法,再结合中值滤波、最大类间方差法和形态学操作实现土壤背景与玉米苗带的分割。其次,通过均值法提取玉米苗带特征点,然后采用中值点Hough变换拟合垄间两侧玉米苗列线,最后将检测出的双侧玉米苗列线为导航基准线,利用夹角正切公式提取导航线。试验结果表明:改进的灰度化算法能够正确分割玉米苗带与土壤,处理一幅640×480像素彩色图像平均耗时小于160 ms,基于中值点Hough变换检测玉米苗列再提取导航线的最大误差为0.53°,相比于传统Hough变换时间上平均快62.9 ms,比最小二乘法平均精确度提高了7.12°,在农田早期玉米苗带多环境变量影响因素下导航线提取准确率均达92%以上,具有较强的可靠性和准确性。  相似文献   
83.
[目的]开展城市生态安全格局构建和主要生态廊道识别研究,为城市国土空间规划中生态格局的优化提供科学参考。[方法]以江西省抚州市为研究区,选取土地利用因子,水土保持功能重要性以及生态敏感性等多种因子构建最小累积阻力模型,依据生物多样性维护功能重要性评价、全域水文分析、生态保护红线以及自然保护地识别生态源地,依托MCR模型和ArcGIS中的空间分析工具开展研究。[结果](1)抚州市整体生态环境良好,水土保持功能极重要性区所占比例为49.97%,主要集中在抚州市中部地区,以黎川县、乐安县、宜黄县和南丰县为主;抚州市生态敏感性极重要区所占比例为1.39%;(2)生态源地面积3302.34 km~2,所占比例为17.57%,以抚州市东部和西南部为主;(3)以全域的生态要素和地形地貌等为基底,抚州市呈现出“一轴、两屏、多廊、多节点”的生态安全格局。[结论]结合生态源地、生态廊道和生态节点,形成完整、系统的生态保护格局和开敞空间网络体系,维护抚州市生态安全和生物多样性。  相似文献   
84.
基于光谱特征空间的农田植被区土壤湿度遥感监测   总被引:1,自引:2,他引:1  
土壤湿度遥感动态监测在农业生产中具有重要作用。近年来,多种基于光谱特征空间的土壤水分监测指数被陆续提出,并得到广泛关注和应用,但当前多数监测指数未考虑混合像元的影响。该文针对垂直干旱指数(perpendicular drought index,PDI)在农田植被覆盖区监测精度降低问题,分析了植被覆盖下的PDI误差分布规律,引入垂直植被指数(perpendicular vegetation index,PVI)作为植被覆盖表征量,在PVI-PDI二维空间对PDI模型进行调整,提出了适于植被覆盖的植被调整垂直干旱指数(vegetation adjusted perpendicular drought index,VAPDI),并利用内蒙古明安镇研究区实测土壤湿度数据,对PDI与VAPDI进行了比较和验证。结果表明,在裸土、麦茬、土豆、豇豆4种植被覆盖类型中,PDI与土壤实测含水率的决定系数分别为0.630、0.504、0.571、0.543,VAPDI与土壤实测含水率的决定系数分别为0.599、0.523、0.602、0.585。VAPDI在植被区的误差略小于PDI,一定程度上克服了植被覆盖对监测精度的影响。通过PDI和VAPDI空间分布图的比较也说明,VAPDI对土壤湿度的差别有更好的区分能力,在中尺度土壤表层水分遥感反演方面具有一定的优势。该研究可为农田土壤湿度遥感监测方法选择及监测误差分析提供参考依据。  相似文献   
85.
为了了解高原湖泊流域“3类空间”的布局结构,探析流域在发展过程中“3类空间”的格局变化及其变化趋势,本文以抚仙湖流域为研究对象,从土地功能空间分类的角度研究抚仙湖流域“3类空间”分类体系,并分析了2005—2015年流域“3类空间”时空格局变化特征,为抚仙湖流域生态环境保护决策和国土空间格局优化研究提供理论参考。结果表明:(1)2005—2015年抚仙湖流域城镇空间呈上升趋势,10 a增加了71.37%,农业空间呈下降趋势,10 a减少了6.38%,生态空间先升后降,总体增加了0.48%;(2)2005年、2010年和2015年抚仙湖流域“3类空间”格局基本一致,以生态空间为主,但城镇空间格局、农业空间格局和生态空间格局的分布存在明显差别,城镇空间和农业空间主要分布于抚仙湖流域的北部,而生态空间除抚仙湖湖泊水面外在流域四周均有分布;(3)从变化程度上看,“3类空间”格局变化差异显著,城镇空间和农业空间格局变化主要发生在流域北部,而生态空间则在湖泊中部沿岸地区。  相似文献   
86.
干旱区土地退化(荒漠化)作为全球面临生态环境挑战之一,对粮食安全、环境质量和区域自然资源管理至关重要。土地退化本质是人与自然因素协同作用下土地利用/覆被类型、数量、结构以及功能的改变而引起的生态服务价值降低,核心是土壤和植被的退化。一方面,人与自然共同作用下的土地利用覆被可以表征土地退化状态,另一方面植被-土壤生境时间序列相互作用过程进一步辅助土地退化过程诊断。因此,该文首先从覆被结构、退化类型和退化程度3个层次建立干旱区土地退化状态评价体系。其次,采用GF-1/WFV时间序列遥感影像,基于多端元光谱混合分解模型建立土地利用/覆被精细分类量化表征下垫面质量属性,并进一步利用植被-生境组分互动特征参数进行功能量化,综合评价民勤2015年退化类型和退化程度。最后,结合地面立地景观照片以及采样点实测数据,对土地退化状态评价结果进行绝对定标和交叉验证。结果表明:遥感评价识别土地退化类型和程度的能力分别为87.5%和78.7%。对于民勤旱地系统,沙化过程、沙-盐化过程是主要的土地退化过程,轻度沙化、中度沙化为主导退化程度。该方法为宽波段遥感国产高分1号卫星在旱地系统土地退化状态信息提取和深入应用提供科学依据和实证研究。  相似文献   
87.
为探究航天诱变对大豆主要农艺性状的影响,本研究比较了航天诱变选育新品种浙鲜9号与其亲本台湾75在生育期、产量、品质、抗病性等方面的差异。结果表明,浙鲜9号播种至采收生育期比亲本短2 d,株高矮7 cm,鲜百荚重高6.1 g,鲜百粒重低2.2 g,青荚色比亲本淡,两年区域试验平均鲜荚产量较亲本显著增加9.4%。浙鲜9号不仅保留了亲本口感甜糯的优良品质,而且对大豆花叶病毒病的抗性有大幅度提高。利用60对核心SSR引物对二者进行分析,在Satt184、Satt197、Sat-213等10个标记间发现多态性位点,引物多态性率为16.7%,Sat-213为大豆花叶病毒病抗性基因Rsc15相关分子标记,这从分子水平证实了浙鲜9号抗性的改良。采用100个SNP标记对二者进行分析,有5个SNP标记在二者之间存在差异。浙鲜9号与亲本主要特征特性和DNA分子标记的对比研究均充分证明了航天诱变育种的有效性和可靠性。  相似文献   
88.
准确获取大豆的空间分布对于产量估计、灾害预警和农业政策调整具有重要意义,目前针对种植结构复杂地区所开展的大豆遥感识别研究鲜有报道。该研究以安徽省北部平原的典型大豆产区——龙山、青疃镇为研究区,基于Sentinel-2数据提出一种分层逐级提取策略的大豆识别方法。该方法首先构建决策树筛选规则,剔除研究区内非农田地物,获得田间植被的总体分布;然后生成19个候选特征因子,包括分辨率小于等于20 m的10个波段反射率以及9个植被指数。在典型地物类型样本的支持下,将ReliefF特征权重评估算法与随机森林(RandomForest,RF),BP神经网络(Back-Propagation Neural Network,BPNN)和支持向量机(Support Vector Machine, SVM)相结合,分别构建ReliefF-RF、ReliefF-BPNN、ReliefF-SVM三种组合模型筛选出对于大豆识别最有效的特征,并基于布设在研究区内6个样方(大小为1 km×1 km)的无人机影像提取得到的大豆分布来评估3种模型在大豆制图中的表现。结果表明,ReliefF-RF模型表现最佳,基于该模型筛选出7个优选特征因子,大豆制图的总体精度介于85.92%~91.91%,Kappa系数在0.72~0.81之间,各个样方的提取效果均优于其他两种模型。此外,基于优选特征达到的提取精度明显高于原始波段反射率,虽然略低于全部19个特征的结果,但是数据量降低了63.16%。该研究可以为农田景观破碎、种植结构复杂地区的大豆种植区提取相关研究提供有价值的参考和借鉴。  相似文献   
89.
基于光谱吸收特征的土壤含水量预测模型研究   总被引:7,自引:0,他引:7  
为了定量分析土壤含水量与反射光谱特征之间关系,并为土壤含水量速测提供理论依据。以黑土作为研究对象,测定实验室光谱反射率,利用去包络线方法提取反射光谱特征指标,建立土壤水分含量高光谱预测模型。结果表明:黑土含水量与1 420 nm、1 920 nm附近吸收谷的主要光谱特征(吸收谷深度、宽度、面积)呈显著正相关;1 920 nm附近吸收谷可作为黑土土壤水分的特征吸收谷,由其光谱特征参数预测黑土含水量;以1 920 nm附近吸收谷面积为自变量建立的一元线性回归模型预测精度高,输入量少,可以作为土壤含水量速测仪器研制的理论依据。  相似文献   
90.
基于声信号特征加权的设施养殖羊行为分类识别   总被引:1,自引:2,他引:1  
中国西部地区正在发展集约化和规模化的设施养羊业,通过监测羊舍内的声信号可以判别羊只的行为状态,从而为设施养羊的福利化水平评估提取基础依据。梅尔频率倒谱系数(mel frequency cepstrum coefficient,MFCC)模拟了人耳对语音的处理特点且抗噪音性强,被广泛用于畜禽发声信号的特征提取,但其没有考虑各个特征分量表征声信号的能力。该研究构建羊舍无线声音数据采集系统,采集20只羊在设施羊舍内的打斗、饥饿、咳嗽、啃咬和寻伴共5种行为下的声信号,并通过Audacity音频处理软件选出720个清晰且不重叠的声音样本数据。根据MFCC各分量对羊舍声信号表征能力,特征参数提取采用一种熵值加权的MFCC参数,再求其一、二阶差分并进行主成分分析降维,得到优化的19维特征参数。通过对羊舍声信号的声谱图分析,设计了支持向量机二叉树识别模型,并对模型内的4个分类器参数进行网格化寻优测试,该识别模型对羊只5种行为下的声信号进行分类识别,用改进的特征参数与传统MFCC和线性预测倒谱系数(linear predictive cepstrum coefficient,LPCC)进行对比分析。结果表明,该特征参数对5种行为的识别率平均可达83.6%,分别高于MFCC和LPCC参数14.1%和26.8%,羊只打斗和咳嗽行为的声信号属于相似的短时爆发类声音,其识别率分别仅为80.6%和79.5%,啃咬声特征显著不易混淆,其查全率可达到为92.5%,改进特征参数更好的表征了羊舍声信号的特征,提高了羊只不同行为的识别率,为羊只健康和福利状况的监测提供理论依据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号