首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   5篇
  国内免费   15篇
农学   1篇
综合类   21篇
畜牧兽医   121篇
  2023年   2篇
  2022年   3篇
  2021年   6篇
  2020年   5篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   15篇
  2015年   2篇
  2014年   3篇
  2013年   8篇
  2012年   5篇
  2011年   9篇
  2010年   10篇
  2009年   12篇
  2008年   10篇
  2007年   11篇
  2006年   5篇
  2005年   6篇
  2004年   5篇
  2003年   3篇
  2002年   2篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1956年   1篇
排序方式: 共有143条查询结果,搜索用时 31 毫秒
21.
本试验选择5头感染环形泰勒焦虫的奶牛和5头健康奶牛,在第0天、第5天、第10天、第15天、第20天分别进行红细胞C3b受体花环率试验、红细胞免疫复合物花环试验、T淋巴细胞EA花环率试验和淋巴细胞转化率的测定。结果表明,感染环形泰勒焦虫的奶牛其红细胞免疫复合物花环、红细胞C3b受体花环率和淋巴细胞转化率明显低于健康奶牛,差异极显著。这说明环形泰勒焦虫对奶牛的免疫水平有明显的抑制作用。且随着检测时间的变化,免疫水平逐渐降低。  相似文献   
22.
PCR-based detection of Theileria ovis in Rhipicephalus bursa adult ticks   总被引:1,自引:0,他引:1  
Tick-borne diseases in ruminants are common in tropical and subtropical regions and lead to meat and milk production losses. In this study, polymerase chain reaction (PCR) was used to assess the presence of Theileria ovis in Rhipicephalus bursa ticks. We have demonstrated that the PCR enabled detection of T. ovis in field isolates of R. bursa collected from naturally infested sheep and goats in eastern Turkey. The sampling was done in spring season (between May and June 2004). A total of 420 R. bursa were collected and randomly selected 192 number of them (97 female and 95 male) were dissected. Primers specific for 520 bp fragments small subunit ribosomal RNA (ssu rRNA) gene of T. ovis amplified products from 37 of the 192 (19.27%) samples. The parasite was detected in 17 (17.52%) female and in 20 (21.05%) male ticks. Two T. ovis amplicons from the tick samples were purified and sequenced. The resulting sequences were identical to the nucleotide sequence of the Turkish sheep strain of T. ovis. These results showed that R. bursa might play an important role in the field as a natural vector of T. ovis.  相似文献   
23.
[目的与方法]以纯化的牛环形泰勒虫GST-Tams1融合蛋白作为检测抗原,通过优化ELISA反应条件,建立检测牛环形泰勒虫血清特异性抗体的间接ELISA方法.[结果]方阵试验确定的GST-Tams1抗原的最适包被浓度为10 μg/mL,血清最佳稀释倍数为80倍,ELISA阳性反应的临界值为OD<,450>≥0.282,批内和批间重复试验的变异系数均小于15;.Tams1间接ELISA方法能排除GST的干扰,与其它梨形虫病无交叉反应,与环形泰勒虫病巢式PCR检测方法的阳性符合率为96;.[结论]建立的Tams1间接ELSIA检测法重复性好、特异性强、灵敏度高.这是国内首次利用重组蛋白建立的牛环形泰勒虫病血清学诊断方法,为大规模地进行牛环形泰勒虫病的流行病学调查和血清学诊断提供有效的技术手段.  相似文献   
24.
牛瑟氏泰勒虫P23表面蛋白基因表达条件的优化   总被引:1,自引:0,他引:1  
将已构建并测序正确的含有牛瑟氏泰勒虫P23表面蛋白基因的pGEX-4T—P23转化菌用IPTG进行诱导表达,经SDS—PAGE电泳可检测到相对分子量为46.0ku的融合蛋白.根据SDS—PAGE确定融合蛋白的最佳表达条件,结果显示诱导时机和时间是影响表达的主要因素,诱导温度和IPTG浓度次之;确定最佳诱导时机为转接种后2.0h,最佳诱导温度34℃,最佳诱导时间6.0h,最适IPTG浓度0.08mmol/L.表达产物主要以包涵体存在,在优化条件下融合蛋白的表达量经Bandscan5.0软件分析约占菌体总蛋白的31.7%.  相似文献   
25.
从病牛血液中提取总RNA,根据GenBank上发表的牛瑟氏泰勒虫HSP70基因序列设计合成1对引物,通过RT—PCR技术扩增出牛瑟氏泰勒虫HSP70基因,并将该基因克隆到pMD18-TSimple载体上,经PCR鉴定和EcoR工、Sal工双酶切鉴定为阳性的重组质粒测定及分析结果表明,该片段长1966bp,编码620个氨基酸残基.同源性分析表明,该序列与牛瑟氏泰勒虫HSP70基因同源性为95.78%.  相似文献   
26.
以真核表达的焦虫表面抗原重组蛋白 TaSP-Tams1-SPAG1作为 ELISA 板包被抗原,通过方阵实验确定抗原包被浓度,探索抗原包被时间、温度、一抗及二抗血清稀释度及作用时间,建立牛环形泰勒焦虫表面抗原重组蛋白 ELISA 方法.结果得出 TaSP-Tams1-SPAG1的最佳包被浓度为10μg/mL,血清最佳稀释度为1∶100, ELISA 阳性反应的临界值为 OD 492nm ≥0.348,重复试验变异系数小于12%,所建立的 ELISA 方法不与牛巴贝斯虫及牛瑟氏泰勒虫血清发生反应.TaSP-Tams1-SPAG1为抗原建立的 ELISA 方法特异性强,敏感度高,重复性好,为牛环形泰勒焦虫病的准确检测及防治提供技术支持.  相似文献   
27.
Forsyth, L.M.G., Jackson, L.A., Wilkie, G., Sanderson, A., Brown, C.G.D. and Preston, P.M., 1997. Bovine cells infected in vivo with Theileria annulata express CD11b, the C3bi complement receptor. Veterinary Research Communications, 21 (4), 249-263Bovine cells from cattle infected with Theileria annulata were phenotyped with monoclonal antibodies recognizing bovine leukocyte antigens. Macroschizont-infected, transformed cell lines prepared from peripheral blood mononuclear cells of cattle, infected with sporozoites, were assessed by flow cytometry; parasitized cells in tissues from infected cattle were examined by immunocytochemical techniques. Co-expression of markers for different cell lineages by the cell lines precluded a definite conclusion as to their phenotypic origins. For, while the pattern of leukocyte antigens expressed by these in vivo-derived schizont-infected cells, which included CD11b, was indicative of a myeloid origin, the possibility that they were NK cells could not be excluded. The monoclonal antibody (MAb) IL-A15, which recognizes CD11b, reacted with a high proportion of parasitized cells in sections of tissues from infected cattle at all stages of acute disease. Mononuclear cells infected with parasites at all stages of differentiation, from macroschizont to microschizont, expressed CD11b. Such parasitized cells occurred throughout the lymphoid tissues, being found in the thymus, spleen and lymph nodes, particularly the prescapular node draining the site of infection, the hepatic, mesenteric and precrural nodes, as well as in the reticulo-endothelial tissue of the liver, kidney, lung, abomasum, adrenal and pituitary glands. These observations provided the first evidence for a myeloid origin for the parasitized T. annulata cells found in infected bovine tissues and blood and suggested a mechanism whereby schizonts could transfer from cell to cell during mechanical infection with schizont-infected cells.  相似文献   
28.
AIM: To describe the prevalence and spatial distribution of cattle herds infected with Ikeda and non-Ikeda types of Theileria orientalis in New Zealand between November 2012 and June 2013.

METHODS: Pooled serum samples collected historically between November 2012 and June 2013 were obtained from cattle herds throughout New Zealand. Each pooled sample consisted of approximately 20 individual cattle samples from that herd, and was provided with details of the spatial location of the herd (n=722). DNA from all samples was tested using two quantitative PCR assays for the detection of T. orientalis (all types) and the Ikeda type. The proportion of herds that were positive for T. orientalis and Ikeda type, or that were positive for T. orientalis but negative for Ikeda type (non-Ikeda positive) was determined for different regions of New Zealand.

RESULTS: The highest prevalence of herds infected with Ikeda type was detected in the Northland (33/35; 94%) and Auckland and the Waikato (63/191; 33%) regions. Only 2/204 (1%) herds were positive for the Ikeda type in the South Island. A high percentage of herds that were positive for non-Ikeda types was detected in the Gisborne and Hawkes Bay (23 (95%CI=13–37)%), Auckland and Waikato (22 (95%CI=16–29)%) and Bay of Plenty (24 (95%CI=10–44)%) regions.

CONCLUSIONS AND CLINICAL RELEVANCE: The high prevalence of Ikeda type detected in cattle herds in the Northland, Auckland and Waikato regions represents a risk to naive cattle being introduced into these regions. There is also the potential for resident cattle herds in the Gisborne and Hawkes Bay, Auckland, Waikato and Bay of Plenty regions to experience increased infection with the Ikeda type.

The overall impact experienced by regions will depend on other factors such as the number of herds present and the predominant type of farming, as well as the interplay between tick ecology, cattle immunity and movement patterns of cattle.  相似文献   

29.
AIMS: To use quantitative PCR assays to detect Theileria orientalis Ikeda type in cattle presumed infected with T. orientalis, to examine the relationship between theilerial piroplasm count and haematocrit (HCT), and the relationship with quantification cycle threshold (Cq) values.

METHODS: Blood samples in EDTA (n=1,024), derived from herds affected by anaemia associated with T. orientalis infection (TABA) between April and October 2013, were submitted for testing using quantitative PCR (qPCR) assays for T. orientalis and Ikeda type. Nucleotide sequencing of the major piroplasm surface protein (MPSP) gene was performed on 16 samples to identify T. orientalis types. Blood smear and/or HCT results were supplied with most samples. For data analysis, the number of theilerial piroplasm per 1,000 erythrocytes counted was categorised as negative (0), low (1–9), moderate (10–100) or high (>100). HCT was categorised as severely anaemic (<0.15 L/L), mildly anaemic (0.15–0.24 L/L) or not anaemic (>0.24 L/L). Differences between categories in proportion of samples positive for Ikeda type or mean Cq value were examined using χ2 tests or analysis of variance, respectively.

RESULTS: Of 1,022 samples containing amplifiable DNA, 916 (90%) were positive for T. orientalis and 789 (77%) were positive for Ikeda type. Nucleotide sequencing of MPSP amplicons also identified the presence of Chitose and Buffeli types in 11 samples without Ikeda. Ikeda was detected in a greater proportion of severely anaemic (288/302; 95%) than mildly anaemic (227/252; 90%) cattle (p=0.02). In non-anaemic cattle, 344/406 (85%) were positive for T. orientalis and 247/406 (60%) were positive for Ikeda type. In samples from cattle that were piroplasm-positive, a greater proportion of anaemic (483/505, 96%) than non-anaemic (211/307; 69%) cattle were positive for Ikeda type (p<0.001). In piroplasm-negative cattle, 20/37 (54%) anaemic and 25/78 (32%) non-anaemic cattle were Ikeda-positive (p<0.05). The distributions of Cq values differed between piroplasm count and HCT categories (p<0.001). Mean Cq differed between high and negative, and low piroplasm categories (p<0.001), but not between high and moderate categories (p=0.81), and differed between severely anaemic and mildly anaemic (p<0.001), and non-anaemic categories (p<0.001).

CONCLUSIONS: The Ikeda type was found in a high proportion of cattle during outbreaks of TABA in New Zealand. Analysis of Cq values suggested a relationship of Ikeda parasitaemia with severity of anaemia, but further investigation is required to better understand the role of parasitaemia in the pathogenesis of TABA.  相似文献   

30.
AIMS: To describe the epidemiology of the epidemic of bovine anaemia associated with Theileria orientalis infection (TABA) in New Zealand between 30 August 2012 and 4 March 2014.

METHODS: Blood samples and associated data were obtained from cases of TABA. The case definition for TABA was met when piroplasms were present on blood smears and the haematocrit was ≤0.24?L/L. Samples were analysed using quantitative PCR (qPCR) assays for the detection of T. orientalis Ikeda type. Only cases that were positive in the qPCR assays were included in the analysis. A case herd was defined as a herd that had ≥1 animal positive for T. orientalis Ikeda.

Movement records for farms were accessed through the national animal identification and tracing scheme. The OR for cattle movements onto a case farm compared to a non-case farm was estimated using a generalised estimating equation model and the geodesic distance for movements onto case and non-case farms compared using Student's t-test. The kernel-smoothed risk of disease at the farm level was calculated using an extraction map and the clustering of diseased farms in time and space was measured using the spatial temporal inhomogeneous pair correlation function.

RESULTS: In the first 18 months there were 496 case herds; 392 (79%) were dairy and 104 (21%) beef herds. Of 882 individual cases, 820 (93.0%) were positive for T. orientalis Ikeda in the qPCR assays. Case herds were initially clustered in the Northland, then the Waikato regions. The OR for a case farm compared to a non-case farm having ≥1 inward cattle movements was 2.03 (95% CI=1.52–2.71) and the distance moved was 26 (95% CI=20.8–31.3) km greater for case farms. The risk of disease was highest in a north, north-eastern to south, south-western belt across the Waikato region. The spatial-temporal analysis showed significant clustering of infected herds within 20–30 days and up to 15?km distant from a case farm.

CONCLUSIONS: Theileria orientalis Ikeda type is likely to have been introduced into regions populated with naïve cattle by the movement of parasitaemic cattle from affected areas. Local spread through dispersed ticks then probably became more important for disease transmission between herds once the disease established in a new area.

CLINICAL RELEVANCE: Dairy and beef farming in the North Island of New Zealand will be significantly changed in the coming years by the incursion of this new disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号