首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   365篇
  免费   13篇
  国内免费   7篇
林业   10篇
农学   77篇
基础科学   2篇
  31篇
综合类   103篇
农作物   24篇
水产渔业   1篇
畜牧兽医   123篇
园艺   3篇
植物保护   11篇
  2023年   3篇
  2022年   8篇
  2021年   10篇
  2020年   6篇
  2019年   14篇
  2018年   9篇
  2017年   14篇
  2016年   19篇
  2015年   15篇
  2014年   19篇
  2013年   28篇
  2012年   23篇
  2011年   17篇
  2010年   16篇
  2009年   19篇
  2008年   17篇
  2007年   19篇
  2006年   12篇
  2005年   13篇
  2004年   9篇
  2003年   7篇
  2002年   3篇
  2001年   4篇
  2000年   8篇
  1999年   2篇
  1998年   4篇
  1997年   7篇
  1996年   8篇
  1995年   6篇
  1994年   8篇
  1993年   7篇
  1992年   5篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   6篇
  1987年   5篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有385条查询结果,搜索用时 609 毫秒
171.
In the Sahel, pearl millet yields are affected by the proportion of hybrid phenotype plants resulting from genetic mixing between domesticated and wild forms. Man counteracts this mixing by applying a production method, the efficiency of which is quantified in this study. Under experimental conditions, cultivated and wild pearl millet were hybridised in order to obtain cultivated pearl millet seeds including a known proportion of F1 hybrids tagged by two different allozymes. These seeds were sown in the field and the cultivation was conducted following practices common in the Sahel. The evolution of the survival rate of plants and the frequency of hybrids were followed over several stages during the season: sowing, germinating, emergence, thinning, flowering and maturing of the seeds. Owing to plant mortality in the experiment, the average tendency was a hybrid frequency that decreased steadily in the first part of the growing season from 42% during germination, to 37% at emergence. It then fell to 17% after the thinning of the plantlets by the farmer. At the end of the cycle, after thinning, only 11% of mature plants were hybrids. Thus, under the combined pressures of natural and human selection, the frequency of hybrids in the field declined drastically. In interaction with natural pressure, the farmer's practices of selection of seeds, sowing in pockets and thinning have the combined effect of heavily selecting the cultivated genotype and limiting without completely preventing the introgression of wild pearl millet genes into the cultivated genome. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
172.
K. Hartung  H.-P. Piepho 《Euphytica》2007,153(1-2):15-26
Cytoplasmic male sterility (CMS) is considered an efficient genetic tool in pearl millet hybrid breeding. Of the several CMS sources available in pearl millet, A1 is the only CMS widely exploited to produce commercial hybrids in India. To explore the possibility of using alternate CMS sources, we studied the cytoplasmic effects of different CMS sources on agronomic characters in pearl millet. Five CMS (A) lines representing A1, A2, A3, A4 and A5 cytoplasms, their respective maintainer (B) lines and eight restorer (R) lines were used to generate 40 A × R and B × R experimental crosses. The experimental material was evaluated at two different locations in India. Analysis of combining ability and heterosis revealed that A4 and A5 cytoplasms had desirable effects for earliness. The A5 CMS was found to be particularly promising, as compared to other CMS sources for improving grain yield. The study also indicated that the cytoplasmic effects on general combining ability (GCA) for various agronomic characters were largely non-significant. However, cytoplasmic effects on specific combining ability and heterosis were found to be modulated by cytoplasmic-nuclear interactions and influenced by the environmental conditions. The study also demonstrated the advantage of utilizing diverse male-sterile and restorer combinations in maximizing the productivity as well as for genetic and cytoplasmic diversification of hybrids in pearl millet.  相似文献   
173.
F. Matzk  A. Mahn 《Plant Breeding》1994,113(2):125-129
Wheat × maize and wheat × pearl millet crosses have proved efficient for haploid production using various genotypes of wheat; 22 and 27 % of florets produced embryos. In favourable conditions 6—9 haploid plants per spike were produced. The following simplifications or improvements in technique are recommended: 1. Only a single treatment with an aqueous solution of dicamba or 2,4-D (50–100 ppm) for embryo stimulation in vivo; 2. Application by spraying or dipping the spikes; 3. Application time two to four days after pollination; 4. Embryo rescue 15 to 18 days after pollination; 5. Crosses without emasculation are possible if pollination occurs 1–2 days before anthesis. More than 450 haploids and some doubled haploid (DH) lines (after colchicine treatment in vitro) were produced using these methods. No hybrid plants, chromosome additions or substitutions were found.  相似文献   
174.
Summary Inheritance pattern of seven dwarf mutants revealed each of them to be controlled by a single recessive gene. Tests for allelism indicated existence of two groups of dwarfs, group 1 comprising six mutants and group 2 a single dwarf. The dwarfs of group 1 were found to be allelic to D2 of the dwarf types already known in this crop and the dwarf of group 2 was allelic to D1 of these types.Botany Department, R.V.V.N. College, Dharanikota, India.  相似文献   
175.
Summary The occurrence of seed malformation in association with reduced thousand grain weight and germination ability has been observed in crosses between cultivated female plants and wild male plants. A survey of 16 cultivated accessions (P. glaucum subsp. glaucum) and 11 wild accessions (P. glaucum subsp. monodii) ranging over the whole species diversity showed this postzygotic incompatibility was general, but its intensity varied greatly with the cultivated female accession used and very little with the wild male parent origin. About 15% of the 123 cultivated x wild crosses observed gave normal seeds. Seed malformation has never been observed in crosses between cultivated accessions and appeared independent of genetic distances between the parents. The reciprocal crosses between wild female plants and cultivated male plants gave normal-looking seeds with good germination but consistently reduced thousand grain weight. Both seed malformation and seed small size are an expression of a genetic imbalance. These slight reproductive barriers seem to have been built during the domestication process.Abbreviation ICRISAT International Crop Research Institute for the Semi-Arid Tropics  相似文献   
176.
G. Chaix  L. Marchais 《Euphytica》1996,88(2):97-106
Summary The compatibility between gynoecia of different penicillarian millets (Pennisetum glaucum and P. purpureum) and pollens from some other Poaceae was evaluated in order to determine whether different penicillarian pistils showed the same pistil-pollen interactions with a same non-penicillarian pollen and to determine whether compatibility was dependent on the genetic divergence or the degree of sympatric evolution of the mating partners. Ten pearl millet lines (P. glaucum subsp. glaucum), six wild pearl millet accessions (P. glaucum subsp. monodii) and one P. purpureum accession were pollinated with five other Pennisetum species: P. pedicellatum, P. polystachyon, P. schweinfurthii, P. squamulatum, P. ramosum, and with three species from other genera: Cenchrus ciliaris, Panicum maximum and Zea mays. Each male species was represented by a unique accession. Pollen grain germination on the stigmata and pollen tube growth in the gynoecia were monitored by means of fluorescence microscopy after aniline blue staining. Significant compatibility differences were observed between a given pollen and gynoecia from different P. glaucum accessions. But there was no evidence of compatibility differences between the three female taxonomic groups. The eight pollen parents can be classified into three groups according to their mean degree of compatibility with the different penicillarian gynoecia. P. ramosum, P. schweinfurthii and P. squamulatum showed a high compatibility: more than 50% of penicillarian gynoecia had pollen tubes at the micropyle, six hours after pollination. Zea mays, Cenchrus ciliaris and Panicum maximum showed a low compatibility: pollen tubes were arrested in the style. P. pedicellatum and P. polystachyon showed nil compatibility: few pollen grains germinated on the stigmata and very rare tubes reached the entry of the style, where they stopped. It must be noted that such a strong gametic barrier has been observed only with pollinator species sympatric to pearl millet.  相似文献   
177.
M. Dujardin  W. W. Hanna 《Euphytica》1988,38(3):229-235
Summary An interspecific hybridization program designed to transfer gene(s) controlling apomixis from Pennisetum squamulatum Fresen. (2n=6x=54) to induced tetraploid (2n=4x=28) cultivated pearl millet, Pennisetum americanum (L.) Leeke resulted in four offtype plants, two with 27 chromosomes and two with 28 chromosomes. These plants were found among 217 spaced plants established from open-pollinated seed of an apomictic 21-chromosome polyhaploid (2n=21) plant derived from an apomictic interspecific hybrid (2n=41) between tetraploid pearl millet and Pennisetum squamulatum. It appeared that a 21- (or 20-) chromosome unreduced egg from the apomictic polyhaploid united with a 7-chromosome pearl millet (2n=2x=14) gamete to produce a 28- (or 27-) chromosome offspring. Meiotic chromosome behavior was irregular averaging from 3.60 to 4.05 bivalents per microsporocyte in the 27- and 28-chromosome hybrids. The 27- or 28-chromosome hybrids, like the 21-chromosome female parent, shed no pollen, but set from 1.8 to 28 seed per panicle when allowed to outcross with pearl millet. Progeny of the 28-chromosome hybrids were uniform and identical to their respective female parents, indicating that apomixis had been effectively transferred through the egg. In addition, a 56-chromosome plant resulting from chromosome doubling of a 28-chromosome hybrid was identified. Pollen was 68 per cent stainable and the plant averaged 2.3 selfed seeds per panicle. Chromosomes of the 56-chromosome plant paired as bivalents (x=10.67) or associated in multivalents. Three to nine chromosomes remained unpaired at metaphase I. Multiple four-nucleate embryo sacs indicated the 56-chromosome hybrid was an obligate apomict. The production of 27-, 28-, and 56-chromosome hybrid derivatives were the results of interspecific hybridization, haploidization, fertilization of unreduced apomictic eggs, and spontaneous chromosome doubling. These mechanisms resulted in new unique genome combinations between x=7 and x=9 Pennisetum species.  相似文献   
178.
M. E. Aken'ova 《Euphytica》1982,31(1):161-165
Summary The occurrence of three male-sterile plants is reported. One in a population of ex-Bormu, an improved recommended variety of day-length neutral gero bulrush millet and the two others in the selfed progeny of a population of maiwa bulrush millet, a short-day photoperiod-sensitive type. Tests confirmed the cytoplasmic-genic nature of the male-sterility in the gero population. No tests could be conducted for maiwa.The transfer of male-sterility from the male-sterile Tift 23A bulrush millet, obtained from the United States, into a maiwa population is also reported. After six backcrosses the maiwa genotype appeared to have been reconstituted against the background of a male-sterility inducing cytoplasm. Maiwa male-sterility maintainer plants have also been identified.  相似文献   
179.
Summary F1 hybrids between short-day photoperiod- sensitive maiwa bulrush millet, Pennisetum americanum (2n=14), and elephant grass, P. purpureum (2n=28), are triploid (2n=21), sterile, and can only be propagated vegetatively. Fertile amphidiploids, (2n=42, with 21 bivalents) were produced by colchicine treatment. Good seed set was obtained upon selfing the amphidiploids and the progeny exhibited variable pollen fertility and bivalent univalent and multivalent formation.Reciprocal crosses between elephant grass and the colchicine-induced amphidiploid failed to produce seeds. The maiwa millet x amphidiploid cross resulted in poor seed set and the reciprocal failed. Maiwa x amphidiploid hybrids were pollen sterile with 2n=21, rather than the expected 2n=28, indicating chromosome elimination.Morphologically, the amphidiploids and maiwa x amphidiploid hybrids closely resembled elephant grass and the F1 hybrid. The amphidiploids showed no superiority over the F1 hybrid and elephant grass in either forage yield or quality but one maiwa x amphidiploid genotype surpassed a promising local elephant grass selection in forage dry matter yield and flowered for a relatively short period.  相似文献   
180.
K. N. Rai  R. P. Thakur 《Euphytica》1995,83(3):225-231
Summary High ergot (Claviceps fusiformis Loveless) susceptibility of pearl millet (Pennisetum glaucum (L.) R. Br.) hybrids has often been associated with the A1 cytoplasm of male-sterile lines (A-lines). To understand the underlying basis of this association and to examine the prospects of breeding ergot-resistant hybrids, we evaluated 56 hybrids and their 15 parental lines for ergot reaction and selfed seedset for 2 years in disease nurseries at ICRISAT Asia Center. Hybrids were made by crossing seven pollen parents (2 susceptible and 5 resistant) onto two resistant and two susceptible A-lines, and their four corresponding maintainer lines (B-lines). A-lines had no selfed seedset while B-lines had 32–75% selfed seedset. Hybrids of A-lines had significantly less selfed seedset than the hybrids of the corresponding B-lines. The reduced seedset of A-lines and their hybrids, however, was not always accompanied by significantly higher ergot susceptibility. Highly resistant hybrids were obtained where both A-lines and pollen parents were highly resistant, regardless of male fertility levels of the hybrids. Thus, although the A1 cytoplasm, by its reduction of male fertility, had a large and significant effect in increasing ergot severity of hybrids, the contribution of nuclear genetic factors of female parents was about 1.8 times larger than that of the cytoplasm.Submitted as JA No. 1776 by the International Crops Research Institute for the Semi Arid Tropies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号