Bovine anaplasmosis, caused by the tick-borne rickettsia Anaplasma marginale, is endemic in South Africa and results in considerable economic loss to the cattle industry. This study was designed to characterize strains of A. marginale at the molecular level from cattle raised in communal and commercial farms in the north-eastern and south-western regions of the Free State Province, South Africa, that varied in rainfall and vegetation. Seroprevalence to A. marginale was determined in 755 cattle by an Anaplasma spp. competitive enzyme-linked immunosorbent assay and ranged from 44% to 98% and was similar in both regions. While Anaplasma centrale was not targeted in this study, A. marginale infections were identified by species-specific msp1alpha polymerase chain reaction in 129 of 215 of the samples studied. Similar genetic diversity of A. marginale strains was found in both the north-eastern and south-western regions. The sequences of 29 A. marginalemsp1alpha amplicons from South African strains revealed considerable genetic diversity providing 14 new repeat sequences. However, 42% of MSP1a repeat sequences were not unique to this region. These results indicated the presence of common genotypes between South African, American and European strains of A. marginale. Cattle movement between different parts of South Africa was suggested by the presence of identical A. marginale MSP1a genotypes in north-eastern and south-western regions of the Free State Province. Control strategies for anaplasmosis in South Africa should therefore be designed to be protective against genetically heterogeneous strains of A. marginale. 相似文献
A study was carried out to determine the possibility of a more-closed farming system for (Dutch) dairy farms. The objective of the study was to provide effective and economically profitable management advice for improving the animal-health status of farms. Management measures will only be successfully applied if supported by farmers and their advisors (such as veterinarians). Therefore, the perception of farmers and advisors of the importance of various risk factors for the introduction of diseases to a farm was determined by using bovine herpes virus type 1 (BHV1) as an example.
As part of the study, an evening-long workshop was organized and run thrice. In total, 49 farmers, veterinarians and AI technicians participated in these workshops. The computerized questionnaire technique was based on adaptive conjoint analysis (ACA). ACA has the advantage that participants can work with a large number of risk factors in a relatively short period of time. Another advantage of ACA (compared with standard questionnaires) is that the answers from each participant can be checked with regard to consistency with respect to the importance assigned to them. Data from participants with inconsistent responses can be excluded from further analyses. The results of the ACA interview were compared with the risk factors reported in the literature as being associated with BHV1 status (e.g. purchase of cattle, participation in cattle shows) and with farmers' actual management to prevent the introduction of diseases.
The workshop participants were all operating in the dairy sector and they seemed well aware of the risk of direct animal contacts for the introduction of BHV1. Farmers thought visitors to be more risky than did AI technicians and (especially) veterinarians. Farmers who purchased cattle or participated in cattle shows were of the opinion that the risks of direct animal contacts were more important than did farmers who were not involved in those practices. Farmers whose farms were BHV1-positive (and participated in cattle shows more often) thought the risk of participation smaller than did farmers with BHV1-negative farms. 相似文献
The female sex hormone estrogen exerts anti‐inflammatory effects. The G‐protein‐coupled estrogen receptor (GPER) has been recently identified as a novel membrane‐type estrogen receptor that can mediate non‐genomic estrogenic effects on many cell types. We previously demonstrated that GPER inhibits tumor necrosis factor alpha‐induced expression of interleukin 6 (IL‐6) through repression of nuclear factor‐kappa B (NF‐κB) promoter activity using human breast cancer cells. Although several reports have indicated that GPER suppresses Toll‐like receptor‐induced inflammatory cytokine expression in macrophages, the molecular mechanisms of the inhibition of cytokine production via GPER remain poorly understood. In the present study, we examined GPER‐mediated inhibition of IL‐6 expression induced by lipopolysaccharide (LPS) stimulation in a mouse macrophage cell line. We found that the GPER agonist G‐1 inhibited LPS‐induced IL‐6 expression in macrophage cells, and this inhibition was due to the repression of NF‐κB promoter activity by GPER. G‐1 treatment also decreased the phosphorylation of inhibitor of κB kinases. Among the mitogen‐activated protein kinases, the phosphorylation of c‐jun N‐terminal kinase (JNK) was increased by G‐1. These findings delineate the novel mechanism of the inhibition of LPS‐induced IL‐6 through GPER‐activated JNK‐mediated negative regulation of the NF‐κB pathway in murine macrophage cells, which links anti‐inflammatory effects to estrogen. 相似文献