首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   1篇
  国内免费   2篇
林业   2篇
农学   1篇
  4篇
综合类   9篇
农作物   1篇
水产渔业   2篇
畜牧兽医   51篇
园艺   19篇
植物保护   2篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   3篇
  2019年   4篇
  2018年   4篇
  2017年   5篇
  2016年   3篇
  2015年   9篇
  2014年   7篇
  2013年   4篇
  2012年   3篇
  2011年   6篇
  2010年   5篇
  2009年   12篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   4篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1995年   1篇
排序方式: 共有91条查询结果,搜索用时 234 毫秒
31.
The difference in the acute phase response of a heat-tolerant and a heat-sensitive Bos taurus breed to a lipopolysaccharide (LPS) challenge when housed at different air temperatures (Ta) was studied. Angus (ANG; heat-sensitive; n = 11; 306 ± 26 kg BW) and Romosinuano (RO; heat-tolerant; n = 10; 313 ± 32 kg BW) heifers were transported from the USDA Agricultural Research Service SubTropical Agricultural Research Station in Florida to the Brody Environmental Chambers at the University of Missouri, Columbia. Heifers were housed in stanchions in 4 temperature-controlled environmental chambers. Initially, Ta in the 4 chambers was cycling at thermoneutrality (TN; 18.5°C–23.5°C) for a 1-wk adjustment period, followed by an increase in 2 of the 4 chambers to cycling heat stress (HS; 24°C–38°C) for 2 wk. On day 19, heifers were fitted with jugular catheters and rectal temperature (RT) recording devices. On day 20, heifers were challenged with LPS (0.5 μg/kg BW; 0 h), sickness behavior scores (SBSs) were recorded, and blood samples were collected at 0.5-h intervals from −2 to 8 h and again at 24 h relative to LPS challenge at 0 h. Serum was isolated and stored at −80°C until analyzed for cortisol and cytokine concentrations. A breed by Ta interaction (P < 0.001) was observed for RT such that the post-LPS average RT in RO heifers housed at TN was lower than the RT of all other treatment groups (P < 0.001), whereas ANG heifers housed at HS had greater post-LPS average RT than all other treatment groups (P < 0.001). In response to LPS, HS increased SBS after LPS in RO heifers compared to RO heifers housed at TN (P < 0.001), whereas HS decreased SBS after LPS in ANG heifers compared to ANG heifers housed at TN (P = 0.014). The cortisol response to LPS was greater in TN than in HS heifers (P < 0.01) and was also greater in RO than in ANG heifers (P = 0.03). A breed by Ta interaction (P < 0.01) was observed for tumor necrosis factor-α (TNF-α) concentration such that HS increased post-LPS serum concentrations of TNF-α in ANG heifers compared to ANG heifers housed at TN (P = 0.041), whereas HS decreased post-LPS concentrations of TNF-α in RO heifers compared to RO heifers housed at TN (P = 0.008). A tendency (P < 0.06) was observed for a breed by Ta interaction for IL-6 concentrations such that RO heifers had greater post-LPS concentrations of IL-6 than ANG heifers when housed at HS (P = 0.020). A breed by Ta interaction was observed for interferon-γ (IFN-γ; P < 0.01) concentrations such that HS decreased post-LPS concentrations of IFN-γ in ANG heifers compared to ANG heifers housed at TN (P < 0.001), and HS increased post-LPS concentrations of IFN-γ in RO heifers compared to RO heifers housed at TN (P = 0.017). These data indicate differences in the acute phase response between the heat-tolerant RO and heat-sensitive ANG heifers under different Ta which may aid in elucidating differences in productivity, disease resistance, and longevity among cattle breeds.  相似文献   
32.
Toll-like receptor 4 (TLR4) and myeloid differentiation factor 2 (MD-2) are essential for recognizing the lipopolysaccharides (LPS) of Gram-negative bacteria. We determined the sequences of cDNAs encoding TLR4 and MD-2 from cetaceans and generated three-dimensional (3D) models for a better understanding of their modes of interaction and LPS recognition. The 3D reconstructions showed that cetacean TLR4 and MD-2 formed a horseshoe-like structure comprised of parallel β-strands and a β-cup structure consisting of two anti-parallel β-sheets, respectively. The (TLR4-MD-2)2 duplex-heterodimer was shown to form a symmetrical structure. Comparison with the interfaces of the complexes in other mammals revealed that cetacean TLR4s have some amino acid residue substitutions involved in duplex-heterodimer formation and in species variation for LPS recognition. These substitutions in the changed amino acid residues may alter the interaction among TLR4, MD-2, and LPS and modify the TLR4/MD-2 immunological responses.  相似文献   
33.
Background: The clinical efficacy of IV infusion of lidocaine for treatment of equine endotoxemia has not been studied. Hypothesis: Lidocaine infusion after exposure to lipopolysaccharide (LPS) will inhibit the inflammatory response and have inhibitory effects on the hemodynamic and cytokine responses to endotoxemia. Animals: Twelve horses. Methods: Two equal groups (n = 6): saline (GI) and lidocaine (GII). In all animals, endotoxin (500 ng/kg body weight [BW]) was injected intraperitoneally over 5 minutes. Twenty minutes later, animals received a bolus of GI or GII (1.3 mg/kg BW) over 5 minutes, followed by a 6‐hour continuous rate infusion of GI or GII (0.05 mg/kg BW/min). Treatment efficacy was judged from change in arterial blood pressure, peripheral blood and peritoneal fluid (PF) variables (total and differential cell counts, enzyme activities, and cytokine concentrations), and clinical scores (CS) for behavioral evidence of abdominal pain or discomfort during the study. Results: Compared with the control group, horses treated with lidocaine had significantly lower CS and serum and PF tumor necrosis factor‐α (TNF‐α) activity. At several time points in both groups, total and differential cell counts, glucose, total protein and fibrinogen concentrations, and alkaline phosphatase, creatine kinase, and TNF‐α activities were significantly different from baseline values both in peripheral blood and in PF. Conclusions and Clinical Importance: Lidocaine significantly decreased severity of CS and inhibited TNF‐α activity in PF.  相似文献   
34.
The purpose of this study was to evaluate the diagnostic and prognostic significance of tumor necrosis factor-alpha (TNF) and interleukin-6 (IL-6) activities and endotoxin concentration in blood and peritoneal fluid of 155 adult horses with acute abdominal disease (colic). Samples also were obtained from 20 healthy adult horses. Blood and peritoneal fluid supernatant TNF and IL-6 activities and endotoxin concentration were significantly greater in horses with colic, compared with healthy horses. In horses with colic, the peritoneal fluid endotoxin concentration and TNF and IL-6 activities were significantly greater than those in blood. Within the colic group, peritoneal fluid IL-6 activity was the analyte that was most frequently increased. Blood and peritoneal fluid supernatant TNF and IL-6 activities were significantly greater when endotoxin was detected in the same sample. Blood and peritoneal fluid IL-6 activity was significantly greater in horses with inflammatory or strangulating lesions, compared with horses having nonstrangulating or noninflammatory lesions. Compared with all other data categories, diagnostic accuracy for nonsurvival was greatest (80%) when blood IL-6 activity exceeded 60 units/mL. The results of this study indicate that endotoxin was present in the peritoneal cavity of at least one third of horses with any acute disease of the abdomen. In horses presented for colic, blood or peritoneal fluid IL-6 activity was more useful than either TNF activity or endotoxin concentration for distinguishing lesion type. Although diagnostic accuracy for the prediction of nonsurvival was good for all of the analytes, negative values were more useful in the prediction of a favorable outcome than were abnormally increased values in the prediction of mortality.  相似文献   
35.
YE Yong-shun  LIU Hua 《园艺学报》2017,33(7):1278-1282
AIM:To observe the inhibitory effects of vinpocetine injection on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in the rats and to explore the underlying mechanisms.METHODS:Male Wistar rats (n=50) were randomly divided into 5 groups:control group,ALI model group,and low,medium and high doses of vinpocetine treatment groups.The rats in control group were injected with 0.9% NaCl at 5 mL/kg through femoral vein.The rats in ALI model group received LPS at 10 mg/kg through femoral vein.After injected with LPS,the rats in vinpocetine treatment groups received vinpocetine at 0.2 mg/kg,0.7 mg/kg or 1.2 mg/kg via intraperitoneal injection.The pathological changes of the lung tissues were observed under microscope with HE staining.The cell apoptosis in the lung tissues was detected by TUNEL staining.Myeloperoxidase (MPO) activity was measured by the method of spectrophotometry.The protein expression of NF-κB,ICAM-1,VCAM-1,Bax and Bcl-2 was determined by Western blot.RESULTS:Compared with ALI group,administration of vinpocetine significantly attenuated the structural injury of the lung and the infiltration of inflammatory cells.Moreover,vinpocetine decreased cell apoptosis and MPO activity in the lung tissues of ALI rats.In addition,the protein expression of NF-κB,ICAM-1,VCAM-1 and Bax was inhibited after vinpocetin treatment,whereas Bcl-2 expression was increased.CONCLUSION:Vinpocetine attenuates LPS-lung injury by reducing MPO activity and regulating NF-κB,ICAM-1,VCAM-1,Bax and Bcl-2 protein expression.  相似文献   
36.
This study investigated the effects of dietary δ-aminolevulinic acid (ALA) on growth performance, nutrient digestibility, blood parameters and whether ALA improved the immune response of weanling pigs challenged with Escherichia coli lipopolysaccharide (LPS). Eighty pigs (body weight = 7.21 ± 0.51 kg) were allotted to four dietary treatments, with four pens per treatment and five pigs per pen. Basal diets were supplemented with 0, 5, 10, and 15 mg/kg ALA (as-fed basis) and fed for 35 days. At the end of the feeding period, 10 pigs were selected from both the 0- and 10-mg/kg ALA treatment groups; five were injected i.p. with LPS (50 μg/kg BW) and the other five pigs with an equivalent amount of sterile saline, resulting a 2 × 2 factorial arrangement. Blood sample and rectal temperature data were collected at 0, 2, 4 and 12 h after challenge. Growth performance was not affected by dietary treatments over the total experimental period. However, dry matter (DM) and nitrogen (N) digestibility was improved in the 15-mg/kg ALA treatment group at day 35 (P < 0.05). Serum hemoglobin (Hb) and iron levels were also increased, with the 10-mg/kg ALA treatment showing the highest concentration (P < 0.05). On day 35, red (RBC) and white blood cell (WBC) counts were elevated, with the 5- and 10-mg/kg ALA treatments having the highest counts (P < 0.05). During challenge, LPS injection elevated rectal temperature at 2 and 4 h postchallenge (P < 0.05). Plasma cortisol concentration was also increased by LPS injection at 2 and 4 h postchallenge and an ALA-alleviating effect was evident at 2 h postchallenge (P < 0.01). Concentration of plasma insulin-like growth factor-I (IGF-I) was increased in the ALA-supplemented treatments at 2 h postchallenge (P < 0.05). LPS injection increased plasma tumor necrosis factor-α (TNF-α) concentrations at 2, 4 and 12 h (P < 0.01), while an ALA-alleviating effect was observed at 2 and 4 h postchallenge (P < 0.05 and P < 0.10, respectively). Challenge with LPS decreased WBC counts at 2 and 4 h postchallenge (P < 0.01). At 12 h postchallenge, RBC, WBC and lymphocyte counts were affected by LPS challenge, while an ALA effect was only observed on WBC count (P < 0.05). In conclusion, dietary supplementation of ALA in weanling pigs can improve DM and N digestibilities, and iron status and have a beneficial effect on the immune response during inflammatory challenge.  相似文献   
37.
本试验旨在研究脂多糖(LPS)刺激后不同时间断奶仔猪肌肉炎症和肌肉蛋白质降解相关基因表达的变化规律。选择42头(7.1±0.9)kg杜×长×大三元杂断奶仔猪,按注射LPS之前(0 h)和注射LPS后1、2、4、8、12、24 h随机分为7个处理,每个处理6头猪。预试14 d后,腹腔注射100μg/kg体重的LPS。按以上时间点将仔猪屠宰,取背最长肌样品待测。结果表明:背最长肌炎性细胞因子肿瘤坏死因子-α(TNF-α)、白细胞介素-1β(IL-1β)、IL-6的mRNA表达量在注射LPS 1~2 h后达到峰值;Toll样受体4信号通路关键基因Toll样受体4(TLR4)、骨髓分化因子88(MyD88),核苷酸结合寡聚域信号通路关键基因核苷酸结合寡聚域2(NOD2)、受体互作蛋白激酶2(RIPK2)的mRNA表达量在注射LPS 2~4 h后达到峰值;肌肉蛋白质降解相关基因叉头转录因子-1(FOXO-1)、FOXO-4、肌肉环指蛋白1(MuRF1)、肌萎缩F-box(MAFbx)的mRNA表达量在注射LPS 12 h后达到峰值。可见,LPS刺激诱导肌肉释放大量炎性细胞因子,使TLR4和NOD炎症信号通路关键基因及肌肉蛋白质降解相关基因mRNA显著表达。  相似文献   
38.
本试验旨在探究饲粮中添加壳寡糖(COS)和鸡源屎肠球菌PNC01(PNC)对脂多糖(LPS)诱导的肉鸡炎症反应的调节作用。选取1日龄健康且体重相近的AA公雏560羽,采用2(LPS刺激/非LPS刺激)×2(添加COS/不添加COS)×2(添加PNC/不添加PNC)三因素试验设计,共8个处理,每处理7重复,每重复10只鸡,试验期21 d。采用玉米-豆粕型基础饲粮,试验饲粮分别在基础日粮基础上添加COS(200 mg/kg)和PNC(1×10~9 CFU/kg)。于试验第17、19、21天,刺激组腹腔注射LPS(1 mg/kg体重),对照组注射等量生理盐水。结果表明:LPS刺激降低肉鸡采食量(P<0.01),破坏肠道形态,降低盲肠食糜中丁酸含量和血清IgA水平(P<0.05),引起脾脏肿大,上调IL-1β和IL-8 mRNA表达(P<0.01);添加COS缓解LPS刺激肉鸡采食量的下降(P<0.05),提高盲肠丙酸和丁酸含量(P<0.05),COS降低脾脏指数和回肠IL-8mRNA表达量(P<0.05),有下调脾脏IL-1βmRNA表达的趋势(P<0.1);PNC可提高21 d肉鸡血清IgA含量(P<0.05),降低肉仔鸡脾脏指数(P<0.01);非LPS刺激时,同时添加COS和PNC可提高盲肠中乙酸含量(P<0.05)。可见,添加COS和PNC均能缓解LPS刺激导致的脾脏肿大,缓解炎症反应,改善LPS刺激对肉仔鸡的不利影响。  相似文献   
39.
40.
Mastitis is a prevalent disease in dairy cows. Gram-negative bacteria, which express the pro-inflammatory molecule lipopolysaccharide (LPS), are responsible for the majority of acute clinical cases of mastitis. Previous studies have identified differential susceptibility of human and bovine endothelial cells (EC) to the pro-inflammatory and injury-inducing effects of LPS. The Toll-like receptor (TLR)-4 signaling pathway, which is activated by LPS, has been well studied in humans, but not in ruminants. Human myeloid differentiation-factor 88 (MyD88) and TIR-domain containing adaptor protein (TIRAP) are critical proteins in the LPS-induced NF-κB and apoptotic signaling pathways. To assess the role of the bovine orthologs of these proteins in bovine TLR-4 signaling, dominant-negative constructs were expressed in bovine EC, and LPS-induced NF-κB activation and apoptosis evaluated. The results from this study indicate that bovine MyD88 and TIRAP play functional roles in transducing LPS signaling from TLR-4 to downstream effector molecules involved in NF-κB activation, and that TIRAP promotes apoptotic signaling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号