首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   9篇
  国内免费   4篇
林业   16篇
农学   10篇
基础科学   17篇
  49篇
综合类   56篇
农作物   10篇
水产渔业   2篇
畜牧兽医   16篇
园艺   1篇
植物保护   2篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2018年   5篇
  2017年   3篇
  2016年   2篇
  2015年   8篇
  2014年   5篇
  2013年   7篇
  2012年   10篇
  2011年   12篇
  2010年   11篇
  2009年   15篇
  2008年   11篇
  2007年   15篇
  2006年   4篇
  2005年   4篇
  2004年   11篇
  2003年   9篇
  2002年   3篇
  2001年   6篇
  2000年   3篇
  1999年   3篇
  1998年   4篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1987年   2篇
  1985年   1篇
排序方式: 共有179条查询结果,搜索用时 31 毫秒
91.
光催化氧化法降解有机磷农药的动力学研究   总被引:1,自引:0,他引:1  
[目的]进一步对有机磷敌敌畏农药光催化降解的反应动力学进行研究。[方法]采用Sol-gel法在玻璃圆形反应器上镀制了TiO2膜,以紫外/二氧化钛膜(UV/TiO2)光催化氧化法来降解有机磷农药敌敌畏溶液,探讨了光催化反应时间、溶液的初始浓度对降解敌敌畏溶液的影响。[结果]由玻璃筒负载的TiO2膜对单一的敌敌畏溶液具有很好的光催化降解效果,TiO2膜具有很好的光催化活性。敌敌畏溶液的初始浓度越低,光催化降解效果越好,经90 min光催化氧化处理后,不同浓度敌敌畏的降解率都能达到90%以上。动力学研究表明,敌敌畏的降解速率对敌敌畏浓度为一级反应,反应速率方程为:Ct=C0e-0.0719t(mg/L)。[结论]光催化降解有机磷农药敌敌畏溶液具有很好的降解效果。  相似文献   
92.
[目的J研究新疆奎屯垦区棉田土壤钾吸附、解吸动力学性质和转化机制,为合理的钾肥施用提供理论依据.[方法]采用连续液流法研究奎屯垦区棉田3种土壤钾吸附、解吸动力学性质.[结果]3种土壤达到吸附、解吸平衡的时间均为:风沙土<草甸土<灰漠土.从吸附、解吸率达到90;以上所需的时间来看,钾的解吸过程快于吸附过程.在土壤钾的吸附、解吸反应中,相关系数以Elovich方程最高,其次为指数方程,抛物线扩散方程最低.[结论]草甸土对钾的吸附量大,在一定时间内解吸量大,说明草甸土供钾潜力大,供钾强度也较大.平衡前钾离子的吸附、解吸速率和吸附、解吸率与反应时间Int间存在良好的线性关系.Elovich方程是描述奎屯垦区三种土壤钾的吸附和解吸过程的最优模型.  相似文献   
93.
啶虫脒水解动力学研究   总被引:4,自引:0,他引:4  
为全面评价啶虫脒提供理论依据。通过模拟实验,观察啶虫脒在不同温度、不同pH值水体中的水解情况,研究其水解动力学。啶虫脒在酸性条件下非常稳定,中性条件下几乎不水解,当pH值≥8时,其水解加速,且随着pH值的升高,水解速度显著增加。啶虫脒的水解过程符合一级反应动力学方程。30℃条件下,pH值为8、91、0时,其水解半衰期分别为2311、03和11.7 d。pH值为89、和10时,温度每提高10℃,水解速率分别增加3.8、3.1和2.9倍,水解温度效应系数分别为4.8、4.1和3.9,活化能分别为120.1、107.2和103.6kJ/mol。啶虫脒的水解过程符合一级反应动力学方程,属于碱催化水解。pH值和温度的升高显著加速啶虫脒的水解。  相似文献   
94.
95.
Previous research has shown that β-glucosidase activity can detect soil management effects and has potential as a soil quality indicator, but mechanisms for this response are not well understood. A significant amount of hydrolytic enzyme activity comes from extracellular (abiontic) activity that is bound and protected by soil colloids. This study was conducted to determine how management affects the kinetics of this enzyme (Km, substrate affinity, and Vmax, maximum reaction velocity) and its degree of stabilization on soil colloids. Soils were sampled from three sites in Oregon, with a paired comparison within each site of a native, unmanaged soil, and a matching soil under agricultural production (>50 years). Microwave radiation (MW) stress was used to denature the β-glucosidase fraction associated with viable microorganisms in these soils as an estimate of abiontic activity. Total activity and Vmax were decreased by both management and MW. The results showed that β-glucosidase activity is sensitive to soil management on a variety of soils and environments (135 vs. 190, 80 vs. 111 and 80 vs. 134 μg PNP g−1 h−1 for managed and unmanaged treatments, respectively, at the three study sites in Oregon). The evidence suggests that this sensitivity to management is not (or minimally) due to differences in isoenzymes (Km generally was unaffected) but rather due to an overall reduction in the amount of enzyme present (Vmax decreased) and that this reduction in activity is reflected more from the activity of enzymes in the stabilized fraction than that associated with viable microbial population. Although β-glucosidase activity after MW irradiation appears to be limited as a soil quality indicator, it maybe useful as research tool to separate abiontic from microbial activity ‘biomass’ β-glucosidase activity correlated with microbial biomass C (r=0.42, P<0.05) but MW irradiated, abiontic, activity did not (r=−0.20NS).  相似文献   
96.
Summary The behaviour and state of soil catalase, dehydrogenases, urease and proteases associated with different soil structural fractions were studied. Assays of the enzymatic sensitivity to pH variation, thermal stability and the calculation of kinetics constants of Michaelis were performed. The results indicated that catalase and urease activity in these soils seem to be of the same type, because the activities presented a similar behaviour in the soil fractions studied. However, their state appeared different in each group of soil units. Dehydrogenases showed a similar state and behaviour while proteases were in a different state and behaviour in each soil fraction.  相似文献   
97.
Deep transport of degradable compounds through soils may occur if the metabolic activity in the soil profile is low; either by natural causes (low temperature during ice melt) or by toxic pollutants. De-icing chemicals (for roads and airports) represents a severe challenge to the soil's purifying capacity; rapid infiltration of contaminated water occurs in near-frozen soil, the contamination includes toxic compounds. Degradation experiments were conducted with toluene, and three compounds frequently used for de-icing; acetate, formate and glycol. The substrates were added to a subsoil (0.93 μmol substrate-carbon (C) g−1 soil, with ample amounts of nitrogen (N) and phosphorous (P)); and their mineralization was monitored in the presence of a toxic compound, benzotriazol (BTA) at various concentrations. BTA is commonly used as an additive in commercial de-icing fluids. A second and third dose of substrate was added after complete degradation of the previous one. The mineralization curves of the three consecutive doses were used to estimate kinetic parameters by fitting to a Monod-model. The model parameters estimated for each substance were the initial biomass C of the organisms growing on each substrate, Cb0, their maximum substrate uptake rates, Vmax, their apparent substrate affinity, KS, and growth yield, Y. The Cb0 values for pristine soil were 4.9, 20.5 and 10 nmol C g−1 soil for formate, glycol and acetate, respectively, and 1-2 orders of magnitude lower for toluene. The KS values were 1.1, 0.6, 2.5 and 0.13 mM for formate, glycol, acetate, and toluene, respectively. The high KS values probably reflect diffusion limitations. The estimated yields (Y) in the absence of BTA were 0.032, 0.53 and 0.42 g biomass-C g−1 substrate-C for growth on formate, glycol and acetate, respectively. BTA invariably reduced the growth yield for organisms growing on the different substrates, and the yield reduction increased with increasing BTA concentrations (more than 50% reduction at 400 mg BTA l−1). The degradation of the four substrates showed major differences in BTA-sensitivity, and there were strikingly weak signs (if any) of increasing BTA tolerance during growth in the presence of BTA (analyses of second and third dose experiments). The modelling of the consecutive substrate doses corroborated previous investigations of BTA effects on mineralization and community PLFA [Jia et al., 2006. Organic compounds that reach subsoil may threaten groundwater quality; effect of benzotriazole on degradation kinetics and microbial community composition. Soil Biology & Biochemistry 38, 2543-2556]. The results and the estimated Monod parameters are useful for predictive modelling of transport and degradation of pollutants as well as natural substances in sub-soils.  相似文献   
98.
The location of extracellular enzymes within the soil architecture and their association with the various soil components affects their catalytic potential. A soil fractionation study was carried out to investigate: (a) the distribution of a range of hydrolytic enzymes involved in C, N and P transformations, (b) the effect of the location on their respective kinetics, (c) the effect of long-term N fertilizer management on enzyme distribution and kinetic parameters. Soil (silty clay loam) from grassland which had received 0 or 200 kg N ha−1 yr−1 was fractionated, and four particle-size fractions (>200, 200-63, 63-2 and 0.1-2 μm) were obtained by a combination of wet-sieving and centrifugation, after low-energy ultrasonication. All fractions were assayed for four carbohydrases (β-cellobiohydrolase, N-acetyl-β-glucosaminidase, β-glucosidase and β-xylosidase), acid phosphatase and leucine-aminopeptidase using a microplate fluorimetric assay based on MUB-substrates. Enzyme kinetics (Vmax and Km) were estimated in three particle-size fractions and the unfractionated soil. The results showed that not all particle-size fractions were equally enzymatically active and that the distribution of enzymes between fractions depended on the enzyme. Carbohydrases predominated in the coarser fractions while phosphatase and leucine-aminopeptidase were predominant in the clay-size fraction. The Michaelis constant (Km) varied among fractions, indicating that the association of the same enzyme with different particle-size fractions affected its substrate affinity. The same values of Km were found in the same fractions from the soil under two contrasting fertilizer management regimes, indicating that the Michaelis constant was unaffected by soil changes caused by N fertilizer management.  相似文献   
99.
The purpose of this study was to monitor the dynamics of gases such as CO2 and CH4 in a soil profile with sufficient temporal resolution to observe possible diurnal variations. A computer-controlled device called a membrane probes array (MPA) was developed that consisted of 9-12 individual membrane probes installed at various soil depths. Each probe was made of a stainless steel pipe with a 1 mm orifice covered with a silicone membrane. Soil gases diffuse through the membrane at a rate proportional to the ambient soil gas concentration. To measure diffusion rates, the probes are flushed with N2 one-by-one at regular time intervals and accumulated gas is detected as a spike with IR and FID analyzers. The longer the period between flushings the higher the gas accumulation and the lower the detection limit for a particular soil gas. The developed MPA agreed well with conventional manual gas sampling in West-Siberian mesotrophic fen. In peat cores with intact Carex-Sphagnum vegetation incubated under constant temperature, water level and artificial light:dark (14:10) cycles, regular diurnal oscillations of soil CO2 and CH4 occurred in the upper part of the peat core down to 19 cm. Gas content in the top layer (3 cm) grew during the light phase, and returned back during the dark phase. In layers further down in the soil, the same events were observed but with progressively increased time delay and lower amplitude. The obtained data agreed with the hypothesis that diurnal variations in soil CO2 and CH4 content are caused by periodic changes in intensity of root exudation that provide a major C- and energy source for soil microorganisms including methanogens. At a soil depth of 23 cm, where the peak of gas bubbles occurred, the signal for both gases became chaotic and not related to the light:dark cycle.  相似文献   
100.
几种土壤氟吸附动力学研究   总被引:8,自引:1,他引:8  
采用平衡法对我国几种土壤氟吸附的动力学过程进行了研究。结果表明,不同土壤氟吸附的动力学参数差异很大,黄壤的最大吸附量最高,棕壤最低,棕壤的平衡时间最短,石灰土的平衡时间最长。不同土壤的氟吸附动力学参数与土壤理化性质有很大相关性。供试土壤的氟吸附动力学过程用双常数方程和E lovich方程描述获得了良好的拟合效果。而一级动力学方程和二级动力学方程都不适合土壤氟吸附动力学过程的描述。不同土壤的k值和β值证明黄壤较其他土壤吸附速率大,对加入土壤中氟的缓冲性大。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号