首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   537篇
  免费   88篇
  国内免费   58篇
林业   4篇
农学   4篇
基础科学   1篇
  37篇
综合类   69篇
农作物   34篇
水产渔业   145篇
畜牧兽医   373篇
园艺   5篇
植物保护   11篇
  2024年   8篇
  2023年   29篇
  2022年   57篇
  2021年   119篇
  2020年   74篇
  2019年   66篇
  2018年   41篇
  2017年   41篇
  2016年   37篇
  2015年   23篇
  2014年   16篇
  2013年   28篇
  2012年   22篇
  2011年   17篇
  2010年   19篇
  2009年   22篇
  2008年   10篇
  2007年   13篇
  2006年   7篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1987年   1篇
  1956年   7篇
排序方式: 共有683条查询结果,搜索用时 31 毫秒
71.
72.
Animal digestive tract is habitat for a large number of autochthonous microbiota, which play central roles in multiple biological and physiological processes of the host. In this study, two different micro‐biomass preparation methods were employed to evaluate the diversity of intestinal mucosa‐associated microbiota in grass carp (Ctenopharyngodon idellus). Genomic DNAs were isolated either directly from intestinal mucosal samples (group A), or from micro‐biomass after microbial dissociation (group B). Community richness, diversity and evenness indices were all higher in group B, but differences were not statistically significant (= 0.97, = 0.33, = 0.34 respectively). Furthermore, group B samples exhibited an increased ratio of bacterial DNA in comparison with group A samples, but the difference was also not statistically significant (= 0.74). In addition, there were no statistically significant differences between the two groups (> 0.05) at the taxonomic level. Our results support previous findings that there exists a great abundance of the intestinal mucosa‐adherent microbiota in the grass carp; among these, Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Spirochaetes and Fusobacteria were the most common phyla. Within these microbiota, Paenibacillus, Bacteroides, Bacillus and Cetobacterium genera comprise the majority of the community, implicating their functional importance (e.g. as probiotics) to their host. Our results contribute towards a better understanding of the intestinal microbial profile of grass carp. Both micro‐biomass preparation techniques proved to be feasible for studying mucosa‐adherent microbiota of grass carp; however, the second method (group B) provides a protocol that is somewhat more effective than the first method (group A).  相似文献   
73.
本试验旨在利用末端限制性片段长度多态性技术研究不同纤维来源饲粮和细胞壁降解酶对猪肠道微生物菌群多样性及其组成结构的影响。试验选用8头平均体重为(35.0±2.5)kg的"杜×长×大"三元杂交生长猪,统一安装回肠末端T型瘘管,随机分为4组,每组2个重复。试验分4期,每期每组猪按4×4拉丁方设计饲喂小麦麸、小麦麸加酶、大豆皮和大豆皮加酶4种试验饲粮之一。每期预试期15 d,正试期6 d。试验结果表明:1)大豆皮饲粮组猪回肠食糜微生物的多样性显著高于小麦麸饲粮组(P0.05)。2)小麦麸饲粮组显著提高猪回肠食糜中普氏菌属(Prevotella)和乳酸杆菌属(Lactobacillus)的丰度(P0.05),而大豆皮饲粮组则显著提高猪回肠食糜中瘤胃球菌属(Ruminococcus)及粪便中拟杆菌属(Bacteroides)、毛螺菌属(Lachnospira)的丰度(P0.05)。3)添加细胞壁降解酶显著提高各饲粮组猪回肠食糜中Lachnospira、真细菌属(Eubacterium)及粪便中Lachnospira的丰度(P0.05),但也同时降低了回肠食糜中Lactobacillus、Prevotella及粪便中Lactobacillus、Bacteroides和克雷伯氏菌属(Klebsiella)的丰度(P0.05)。综上所述,纤维饲粮可显著提高猪肠道内非淀粉多糖降解菌的丰度,而细胞壁降解酶则可选择性改变肠道微生物菌群的多样性及其组成。  相似文献   
74.
The gastrointestinal (GI) tract of an animal consists of a very complex and dynamic microbial ecosystem that is very important from a nutritional, physiological and pathological point of view. A wide range of microbes derived from the surrounding aquatic environment, soil/sediment and feed are found to colonize in the GI tract of fish. Among the microbial groups, bacteria (aerobic, facultative anaerobic and obligate aneraobic forms) are the principal colonizers in the GI tract of fish, and in some fish, yeasts are also reported. The common bacterial colonizers in the GI tract of freshwater and marine fish include Vibrio, Aeromonas, Flavobacterium, Plesiomonas, Pseudomonas, Enterobacteriaceae, Micrococcus, Acinetobacter, Clostridium, Fusarium and Bacteroides, which may vary from species to species as well as environmental conditions. Besides, several unknown bacteria belonging to Mycoplasma, Arthrobacter, Brochothrix, Jeotgailbacillus, Ochrobactrum, Psychrobacter and Sejongia species in the GI tract of different fish species have now been identified successfully using culture‐independent techniques. Gnotobiotic and conventional studies indicate the involvement of GI microbiota in fish nutrition, epithelial development, immunity as well as disease outbreak. This review also highlights the need for manipulating the gut microbiota with useful beneficial microbes through probiotic, prebiotic and synbiotic concepts for better fish health management.  相似文献   
75.
通过录制大黄鱼(Larimichthys crocea)产卵场附近船舶航行时的噪声,并以此为刺激源,以大黄鱼幼鱼为实验对象,研究了船舶噪声声压级对大黄鱼幼鱼游泳、摄食行为及免疫生理指标的影响。研究发现,当噪声声压级<60 dB时,幼鱼趋避游泳行为不强烈;但随着声压级增大,开始呈现出不同强度的趋避行为,依次表现出:游泳速度加快、鱼与鱼之间及鱼与桶壁之间发生碰撞、瞬间反应无序、跳跃等行为;当声压级>200 dB时,刺激2 min后就出现了死亡个体。在120 dB和150 dB短期单次和多次刺激下,幼鱼血浆中的皮质醇、血糖、血红蛋白和乳酸这4个与应激相关的生理指标均显著上升,其中皮质醇、血糖和乳酸上升幅度尤为明显。另外,皮质醇单次刺激后即达到峰值,而多次刺激后反而较单次刺激有所下降;血糖、血红蛋白和乳酸则具有累加效益,多次刺激要高于单次刺激。在120 dB长期(30 d)刺激下,幼鱼生长明显减缓,血浆中部分免疫指标(免疫球蛋白M,干扰素-α,白介素-1β和肿瘤坏死因子-α)明显降低,肠道菌群也发生显著变化,突出表现为部分益生菌如芽孢杆菌、乳杆菌等相对丰度明显降低。摄食行为影响方面,研究发现幼鱼能准确识别噪声源的位置,并具有一定的记忆性。研究结果揭示了船舶噪声对大黄鱼幼鱼的危害,可为今后制定大黄鱼产卵场的保护措施提供数据支撑。  相似文献   
76.
A six‐week feeding trial was conducted to determine the effects of different concentrations of fucoidan (1 g/kg, 10 g/kg and 30 g/kg; w/w) from Undaria pinnatifida on gibel carp (Carassius auratus gibelio). Our results demonstrated that 30 g/kg fucoidan significantly increased (p < .05) growth performance, intestinal digestive enzyme activities, acid phosphatase activity and immunoglobulin M content. Histological examinations revealed that gibel carp receiving 30 g/kg fucoidan had significant higher abundance of mucin‐containing goblet cells in middle and distal intestine as compared with control treatment (p < .05). Intestinal microbiota analysis showed that 30 g/kg fucoidan supplementation significantly increased (p < .05) the abundance of Cetobacterium and Aeromonas, but lowered (p < .05) the prevalence of pathogenic bacteria Plesiomonas and a mucin‐degrading bacterium Mucinivorans. Furthermore, RNA‐seq and RT‐qPCR analysis indicated that 30 g/kg fucoidan caused significant changes (p < .05) in the expression of genes involved in immune regulation (such as interleukin‐8 and cyclooxygenase), signal transduction (such as phosphatidylinositol‐4,5‐bisphosphate 3‐kinase and protein kinase B) and nutrition utilization (maltase–glucoamylase and muscarinic acetylcholine receptor 3). Together, the current study shows that fucoidan supplementation could elevate the activity of intestinal digestive enzymes, modulate intestinal microbial communities and potentiate a higher state of immune readiness, which might consequently improve growth performance and intestine health status of gibel carp.  相似文献   
77.
The purpose of the present study is to profile the microfloral structure in the intestines of the white shrimp, Litopenaeus vannamei, after being fed a control diet, in comparison with the diets containing Bacillus subtilis E20‐fermented soybean meal (FSBM) or an antimicrobial peptide (AMP) isolated from B. subtilis E20‐FSBM (diets designated FSBMD and AMPD, respectively) for 60 days. Metagenomic data showed detection of eight phyla, 20 classes, 40 orders, 68 families and 96 genera. Despite no statistically significant difference, an evaluation of microbial diversity recorded higher species richness, Shannon–Weaver diversity index and evenness in the AMPD and FSBMD groups, compared to the control diet group. Venn diagrams showed that 58 of the operational taxonomic units (OTUs) were shared among the control, FSBMD and AMPD groups, but additional beneficial microbes were only found in the FSBMD and AMPD groups. In addition to the augmentation of beneficial bacteria in the FSBMD and AMPD groups, the abundance of potential pathogens, Vibrio and Flavobacterium, was lower in the gut of shrimp fed the FSBMD and AMPD. The results clearly suggest that the FSBMD and AMPD have the capability to change the microfloral structure of shrimp intestines and could be used for disease prevention in shrimp aquaculture.  相似文献   
78.
Nibea, an economical marine fish, is generally fed on trash fish (the low‐value fish), which can cause high feed costs and waste pollutions in high‐density aquaculture. To assess the effect of formulated diet on the gut microbiota in Nibea coibor and Nibea diacanthus, denaturing gradient gel electrophoresis, clone libraries analysis and Illumina sequencing of the 16S ribosomal RNA gene were used in this study. Two Nibea fishes were both dominated by Gammaproteobacteria (especially Photobacterium) and shared a set of gut microbiota, including Bacilli, Mollicutes, Alphaproteobacteria and Fusobacteriia. Statistical analyses revealed that formulated diet led to lower feed conversion ratio (p < 0.001), lower abundance of Vibrio (p = 0.040) and infectious diseases pathways (p = 0.001), higher abundance of polysaccharide‐degrading bacterium Cellvibrio (p = 0.006) in two Nibea species, with higher weight gain rate (p = 0.023) and microbial diversity (Shannon, p = 0.049 and Simpson, p = 0.044) and more carbohydrate metabolism (p = 0.020) observed in N. coibor. The distribution and correlation network of 17 potential short‐chain fatty acid producing bacteria were obtained and visualized in all treatment groups. The results reveal that formulated diet has beneficial effects on the gut microbial ecology in two Nibea fishes, which suggests the possibility of replacing trash fish diet with formulated diet in Nibea aquaculture.  相似文献   
79.
The aims of this study were to unravel the intestinal microbiota of Litopenaeus vannamei after being fed a diet without (control) or with the synbiotic (SYN) for 60 days using next‐generation sequencing technology to see if changes in the intestinal microbiota were involved in the improved growth performance and health status of the shrimp. Next‐generation sequencing data showed that six phyla, 11 classes, 19 orders, 30 families, 58 genera and 73 species with taxonomic names assigned were detected. The majority of the operational taxonomic units (OTUs) was shared between the SYN and control shrimp and comprised 37 OTUs. However, intestinal biodiversity analyses revealed that SYN‐fed shrimp had a higher species richness, evenness and Shannon–Weaver index than did shrimp fed the control diet, but without reaching statistical significance. Interestingly, shrimp fed the SYN diet exhibited improved colonization of Lactobacillus plantarum and reduced prevalences of Vibrio harveyi and Photobacterium damselae in the intestines. These findings indicate that the SYN was able to modulate the intestinal bacterial community of shrimp and could be used to control vibriosis in shrimp.  相似文献   
80.
牛异食行为(PICA)是以舔食、啃咬一些无营养价值异物为特征的一种异常行为,大多研究认为,PICA是因某些营养素紊乱和生活环境受限所致.业已证明,肠道菌群与宿主营养代谢关系密切,肠道菌群-肠-脑(micro-biota-gut-brain,MGB)轴与动物行为之间的相关性研究日益被揭示.但PICA牛的营养代谢物变化与其...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号