首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   29篇
林业   16篇
农学   3篇
基础科学   2篇
  76篇
综合类   23篇
农作物   1篇
水产渔业   3篇
畜牧兽医   2篇
  2025年   1篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   4篇
  2019年   5篇
  2018年   4篇
  2017年   3篇
  2016年   10篇
  2015年   3篇
  2014年   2篇
  2013年   5篇
  2012年   8篇
  2011年   14篇
  2010年   5篇
  2009年   10篇
  2008年   6篇
  2007年   7篇
  2006年   7篇
  2005年   11篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1995年   1篇
排序方式: 共有126条查询结果,搜索用时 0 毫秒
71.
    
Periods of prolonged summer drought are likely to be expected for this century, with possibly strong effects on carbon (C) and nitrogen (N) mineralization in soils. Drought generally reduces mineralization rates, but the possibility of excess mineralization pulses during rewetting raises the question about the net effect of drying-rewetting events. In this experiment, we measured C and N mineralization in undisturbed soil columns that were either kept under continuously moist conditions (control) or that were subjected to drying-rewetting. We had three treatments (D1-D3) with different drying intensity (increasing from D1 to D3) but uniform rewetting intensity (4 mm d−1). Soil columns were taken from a Norway spruce forest in Bavaria, Germany. The CO2 fluxes from control and treatment groups were identical before drying. Over the 80 d drought period, total CO2 emissions from D1, D2, and D3 were only 72, 52 and 43% of that from the control, respectively. Rewetting resulted in a fast increase of CO2 fluxes to approx. the same level as in the control. Rewetting could not restore soil moisture of the dry soil to the level of the control, presumably because of preferential flow and water repellency of soil organic matter. No significant excess C mineralization during the 40 d rewetting period was observed. Adding up total CO2 fluxes during drought and rewetting period, the treatments D1, D2, and D3 emitted only 88, 71 and 67% of the CO2 emitted by the control. Measurements of dissolved organic carbon (DOC) did only show minor differences between control and treatment columns, indicating that no significant accumulation of DOC took place during the drought period. Radiocarbon signature of emitted CO2 indicated that C mineralization was reduced with decreasing water availability and no new substrate became bioavailable. Net N mineralization over the course of the whole experiment was reduced by drought to 77, 65 or 52% of the control. Net nitrification was virtually zero during drought whereas net ammonification continued at reduced levels. In summary, we found that drying-rewetting generally reduced C and N mineralization in this soil and that the total reduction increased with drought intensity.  相似文献   
72.
The effects of three common tree species - Scots pine, Norway spruce and silver birch - on leaching of dissolved organic carbon and dissolved nitrogen were studied in an experimental forest with podzolised soils in southern Sweden. We analyzed soil water collected with lysimeters and modeled water fluxes to estimate dissolved C and N fluxes. Specific UV absorbance (SUVA) was analyzed to get information about the quality of dissolved organic matter leached from the different stands. Under the O horizon, DOC concentrations and fluxes in the birch stands were lower than in the spruce and pine stands; annual fluxes were 21 g m−2 y−1 for birch and 38 g m−2 y−1 and 37 g C m−2 y−1 for spruce and pine, respectively. Under the B horizon, annual fluxes for all tree species ranged between 3 and 5 g C m−2 y−1, implying greater loss of DOC in the mineral soil in the coniferous stands than in the birch stands. We did not find any effect of tree species on the quality of the dissolved organic matter, as measured by SUVA, indicating that the chemical composition of the organic matter was similar in leachates from all three tree species. Substantial amounts of nitrogen was leached out of the soil profile at the bottom of the B horizon from the pine and birch stands, whereas the spruce stands seemed to retain most of the nitrogen in the soil. These differences in N leaching have implications for soil N budgets.  相似文献   
73.
    
Sorption of pesticides and DOC on glass and ceramic suction cups Suction cups are widely used for the sampling of soil solution. Due to sorption and desorption processes the concentration of dissolved substances in the samples may vary considerably depending on the material of the suction cups. In order to minimize these losses, a new glass suction cup was developed. In laboratory studies, aqueous solutions of pesticides and DOC were percolated through both types of suction cups; the concentration of pesticides and DOC in the percolates was examined. The pesticides pendimethaline, terbuthylazine, metolachlor and chlortoluron were tested at concentrations of 2, 20, and 200 μg 1−1. The average losses due to sorption by the suction cups were 10% (1.1—31%) for the ceramic cups and 3.1% (0—11%) for the glass cups. Sorption effects increased with increasing hydrophobicity of the pesticides and decreasing pesticide concentrations. Thus, at a concentration of 2 μg 1−1 ceramic cups sorbed 31% of pendimethaline compared with 7.7% in the case of glass cups. Corresponding tests with soilborne DOC solutions yielded comparable results. Ceramic suction cups adsorbed up to 50% of the DOC input concentration, while glass cups retarded 2.4% on average. These results are especially noteworthy because soilborne dissolved organic substances are effective sorbents and carriers for pesticides. The new type of glass suction cups may help to improve the results of pesticide field studies and, in consequence, the assessment and prediction of the leaching behavior of pesticides.  相似文献   
74.
Most climate change scenarios predict that the variability of weather conditions will increase in coming decades. Hence, the frequency and intensity of freeze-thaw cycles in high-latitude regions are likely to increase, with concomitant effect on soil carbon biogeochemistry and associated microbial processes. To address this issue we sampled riparian soil from a Swedish boreal forest and applied treatments with variations in four factors related to soil freezing (temperature, treatment duration, soil water content and frequency of freeze-thaw cycles), at three levels in a laboratory experiment, using a Central Composite Face-centred (CCF) experimental design. We then measured bacterial (leucine incorporation) and fungal (acetate in ergosterol incorporation) growth, basal respiration, soil microbial phospholipid fatty acid (PLFA) composition, and concentration of dissolved organic carbon (DOC). Fungal growth was higher in soil exposed to freeze-thawing perturbations and freezing temperatures of −6 °C and −12 °C, than under more constant conditions (steady 0 °C). The opposite pattern was found for bacteria, resulting in an increasing fungal-to-bacterial growth ratio following more intensive winter conditions. Soil respiration increased with water content, decreased with treatment duration and appeared to mainly be driven by treatment-induced changes in the DOC concentration. There was a clear shift in the PLFA composition at 0 °C, compared with the two lower temperatures, with PLFA markers associated with fungi as well as a number of unsaturated PLFAs being relatively more common at 0 °C. Shifts in the PLFA pattern were consistent with those expected for phenotypic plasticity of the cell membrane to low temperatures. There were small declines in PLFA concentrations after freeze-thawing and with longer durations. However, the number of freeze-thaw events had no effect on the microbiological variables. The findings suggest that the higher frequency of freeze-thaw events predicted to follow the global warming will likely have a limited impact on soil microorganisms.  相似文献   
75.
Following the tree harvest, the biogeochemistry of a catchment is modified by changes in soil temperature and moisture, and nutrient cycling. We monitored soil-solution and stream-water chemistry, and soil properties in a Pinus radiata D. Don plantation in New Zealand before and after clear-cutting and replanting in 1997. The annual rainfall during the study was 1440–1860 mm. The soil was a 1800-year-old pumice soil of high natural N status; the catchment had received large inputs of volcanic N in rain, probably over the 1800 years since the pumice had been deposited. The leaching loss of nitrate-N was 28 kg ha−1 yr−1 in 1996, and then decreased sharply after clear-cutting to 3 kg ha−1 yr−1 in 1998 and <1 kg ha−1 yr−1 in 1999. Weed growth and soil microbial biomass increased during this time, and would have removed much of the N from soil solution in the upper soil layers. Although the catchment was small (8.7 ha), there was a 2-year lag until N decreased in stream-water; the losses of dissolved organic N to stream-water were low. There was no change in soil pH over the 4 years, but spring-water pH appeared to increase, which was consistent with the increase in bicarbonate that accompanied grass/weed growth. The export of cations (mmolc l−1) in the spring-water was Na>Ca>Mg=K as expected for rhyolitic pumice, and the total concentration was probably controlled by the accompanying anions. The export of anions was NO3=Cl>SO4=HCO3 before harvest and HCO3=Cl>SO4=NO3 after harvest.  相似文献   
76.
77.
柴油机后处理装置的颗粒排放物拉曼光谱研究   总被引:2,自引:0,他引:2       下载免费PDF全文
为研究发动机排放颗粒物经氧化催化转化器(DOC)以及柴油颗粒捕集器(DPF)后结构和化学组成的变化规律,在一台配备后处理装置的电控高压共轨增压中冷柴油机上进行颗粒物取样,采用激光拉曼光谱仪测取拉曼光谱,比较了不同测点位置颗粒物的拉曼光谱特征。结果表明:颗粒物的拉曼光谱均由5个峰组成,且峰位在一个较小的范围内变化,描述颗粒物结构和组成的各特征参数随测点位置的不同而变化,即ID1 /IG 随测点后移而减小,ID2 /IG 逐渐增大,而ID3 /IG 、ID4 /IG 和IALL /IG 均表现为先减小后增大的趋势,说明经过DOCDOC+DPF时颗粒物发生了物理和化学变化,从而使颗粒结构和成分发生变化。代表颗粒物石墨化程度的ID1 /IG 值随测点的后移而增加,但是DPF后颗粒的有机物成分所占比例最大。  相似文献   
78.
在祁连山国家级自然保护区西水林区植被类型变化较大林区,选择邻近相同海拔、坡向和土壤类型的天然林(青海云杉林、祁连圆柏林、高山灌丛林)、人工林(13年生华北落叶松)、牧坡草地和农田为研究对象,采用野外调查测定、野外定位研究和室内分析相结合的方法,对祁连山不同植被类型土壤可溶性有机碳随土壤水运动进行了研究。结果表明:可溶性有机碳(DOC)浓度,雨水中为O.8~1.4mg/L,地下水中为3.0—8.4mg/L,穿透雨中为2.1~14.6mg/L,残体溶解为10.3~65.3mg/L;0~20cm土层溶液DOC浓度,天然林为16.4~41.0mg/L,草:地为14.5~21.8mg/L,农田为14.8~20.5mg/L,人工林为21.2~66.2mg/L,农田、草地比天然林、人工林低。  相似文献   
79.
Research into postharvest management of forests often focuses on balancing the need for increased biomass yield against factors that may directly impact the productivity of the subsequent stand (e.g. nutrient and water availability, soil microclimate, etc.). Postharvest organic matter management, however, also exerts a strong influence over the translocation of carbon (C) into and through the soil profile and may provide a mechanism to increase soil C content. The effects of contrasting postharvest organic matter retention treatments (bole-only removal, BO; whole-tree removal, WT) on soil solution C concentration and quality were quantified at the Fall River and Matlock Long-term Soil Productivity (LTSP) studies in Washington state. Solutions were collected monthly at depths of 20 and 100 cm and analyzed for dissolved organic C (DOC), dissolved organic nitrogen (DON) and DOC:DON ratio. Comparisons of DOC concentrations with depth illustrate divergent trends between the two treatments, with an overall decrease in DOC with depth in the BO treatment and either an increase or no change with depth in the WT treatment. Trends in DON concentrations with depth were less clear, partly due to the very low concentrations observed, although the relationship of DOC:DON with depth shows a decrease in the BO treatment and little to no change in DOC quality in the WT treatment. This illustrates that more recalcitrant organic matter (higher DOC:DON) is being removed from solution as it moves through the soil profile. Only 35–40% of the DOC moving past 20 cm in the BO treatment is present at 100 cm. Conversely, 98–117% of the DOC at 20 cm in the WT treatment is present at 100 cm. Thus, 11 and 30 kg C ha−1 yr−1 are removed from solution between 20 and 100 cm in the BO treatment at the Matlock and Fall River LTSP studies, respectively. Although much of this C is often assumed to be utilized for microbial respiration, DOC:DON ratios of the potential organic substrates and the unique mineralogy of the soils of this region suggest that a significant portion may in fact be incorporated into a more recalcitrant soil C pool. Thus, postharvest organic matter retention may provide a mechanism to increase soil C sequestration on these soils.  相似文献   
80.
Soil compaction is an often-recorded characteristic of degraded soils, and—along with soil sealing and contamination—frequently found in urban habitats. Knowledge about the impact of soil degradation on the ecosystem functioning in urban environments is limited, although urbanization is the major ongoing land use change worldwide. Since urban soils are a potential habitat for soil animals, and burrowing soil fauna exerts a profound impact on the structure and functioning of soils, we studied the impact of increased bulk densities on the ability of Enchytraeus albidus (Enchytraeidae: Oligochaeta) to penetrate compacted soils. Moreover, it was our aim to characterize the influence of the worms on the mobilization of nutrients in urban soils. E. albidus was able to enter compacted sandy loamy soil columns with a bulk density of up to approx. 1.4 g cm−3, but only up to approx. 1.0 g cm−3 in pure sandy soil columns. Soil compaction increased the amounts of water-extractable sodium (7.5%) and magnesium (13.4%) compared to the non-compacted soil. Presence of E. albidus in the non-compacted soil resulted in higher water-extractable concentrations of sodium (17.4%), potassium (16.8%), calcium (11.3%), magnesium (13.2%), dissolved organic carbon (DOC, 14.5%) and nitrate (20.4%) in soil extracts. In the compacted soil, however, the enhanced nutrient availability due to the activity of the enchytraeids was less pronounced than in the non-compacted soil. Although the concentrations of DOC (13.5%), nitrate (15.6%), calcium (5.8%) and magnesium (4.0%) were significantly higher in the presence of E. albidus than in the columns without animals, the performance of the animals was partly impaired. This was most likely due to the higher penetration resistance of the compacted soils. The degree of compaction investigated in this study was relatively low-chosen to allow for the colonization of the soils by E. albidus. We conclude that the observed negative effects of increased bulk densities on the activity of soil enchytraeids can occur in any more frequented city park, thereby decreasing turnover rates and the supply of soil nutrients in urban ecosystems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号