The design and operation of aquaculture tanks should minimize stagnant areas especially in the immediate vicinity of the fish. In tanks with pelagic fish, mixing caused by the water flow and by fish swimming is sufficient to maintain dissolved oxygen and metabolite concentrations in the immediate vicinity of the fish that are similar to those in the main water body. Given the behavior of sedentary benthic species, such as the California halibut (Paralichthys californicus), and their tendency to remain motionless on the bottom of aquaculture tanks, often in layers that are several fish deep, water quality may stratify with the worse conditions occurring in the area where they fish are lying. The purpose of this study was to evaluate the influence that California halibut (450 g average weight) may have on the vertical profile of oxygen concentration in a raceway (239 cm long, 28 cm wide) and a circular tank (92 cm diameter) operated at two water depths (10 and 20 cm). Oxygen was measured at each centimeter of the vertical profile both in an area with fish and without fish to assess their influence.
Results showed a lower oxygen concentration in the near-bottom region of the raceway and circular tanks. The phenomenon was most pronounced in the raceway operated at a 20 cm depth, but was also observed in the circular tank operated at 20 cm and in the raceway at 10 cm.
Measurements were also taken in samples collected just in front of or directly from a fish's mouth. A zone of depressed oxygen concentration in the immediate vicinity of the fish was documented, with oxygen concentrations as low as 50% of the measured tank effluent concentration. The magnitude of the depression was greater in raceways than in circular tanks and in 20 cm water depth than in 10 cm depth. The fish remained sedentary in these zones of depressed oxygen concentration for extended periods of time and frequently exhibited hyperventilation. The oxygen concentrations in the vicinity of the fish were consistently lower than the concentrations measured in the tank effluent. Therefore, effluent measurements did not provide an accurate representation of conditions to which the fish were exposed. 相似文献
Small raceways were used in a weaning experiment with Atlantic halibut (Hippoglossus hippoglossus L.) larvae. The size of the tanks was 1.0 × 0.4 m with a 1‐ to 2‐cm water level. Duplicate larval groups were transferred to the raceways from circular first feeding tanks at 0.07, 0.10 and 0.16 g wet weight, while recommended weaning size of this species is 0.2–0.3 g. During the first 7 days of weaning, Artemia was used as a food supplement in combination with the formulated dry feed. Thereafter only dry feed was used. The dry feed used in this experiment was produced by a special heat technique. The 0.07, 0.10 and 0.16 g larval groups were evaluated after 31, 25 and 17 days respectively (same date) The corresponding average survival was 81.4%, 78.0% and 96.6% and the specific daily growth rate was 3.18%, 3.17% and 2.38% respectively. In the Artemia control group, a survival rate of 96.0% and a growth rate of 5.28% was achieved. To evaluate the weaning success, the groups were followed in a 22‐day post‐weaning period on a commercial dry diet. Higher growth rates, 5.8–6.9%, were then obtained in all experimental groups, except control. The survival here averaged approximately 80% in the three experimental groups, but showed some differences between replicates. One hundred per cent survival was achieved during weaning in the former Artemia group. From the start of weaning to the end of the post‐weaning period, the survival rates averaged 64% for the 0.07 and 0.10 g groups, approximately 80% for the 0.16 g group and 96% in the Artemia control group. Higher variance (CV) through the experiment and highest growth of the 75% quartiles of the fish groups compared with the 50% and 25%, indicated suppressed growth of the smaller fish. The successful weaning at these small sizes considerably reduced the live food period. Based on the present knowledge of the energetic demands of this species, it is calculated that weaning at 0.07 g compared with 0.25 g will reduce the amount of Artemia needed by at least 60%. No differences in pigmentation or degree of completed eye migration were detected between groups, indicating that this is determined at earlier developmental stages. 相似文献
We describe the development and distribution of intestinal aminopeptidase M, dipeptidyl aminopeptidase IV, non-specific esterase, alkaline phosphatase and acid phosphatase, using enzyme histochemistry techniques, in the spotted sand bass larvae ( Paralabrax maculatofasciatus ) under culture conditions. All digestive enzymes tested showed a positive reaction from first feeding (day 2) and throughout the study period (day 30). At first feeding, the main enzymatic activity was in the mucosa throughout the intestines. Later, enzymatic activity occurred in the liver, kidney and stomach. All enzymatic activities increased from days 15 to 20, remaining constant until the end of the study. This enzymatic activity suggests the onset of maturation of the digestive tract. After day 20, a positive reaction was recorded in the pyloric caeca for all tested enzymatic activities. Our study confirms the digestive and absorptive functions in the intestines in spotted sand bass larvae from first feeding. It also brings new insight to establish an early weaning strategy during cultivation of spotted sand bass larvae. 相似文献