首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4708篇
  免费   326篇
  国内免费   379篇
林业   341篇
农学   248篇
基础科学   46篇
  1859篇
综合类   1626篇
农作物   147篇
水产渔业   153篇
畜牧兽医   603篇
园艺   99篇
植物保护   291篇
  2024年   56篇
  2023年   150篇
  2022年   254篇
  2021年   268篇
  2020年   261篇
  2019年   263篇
  2018年   172篇
  2017年   268篇
  2016年   318篇
  2015年   249篇
  2014年   244篇
  2013年   355篇
  2012年   332篇
  2011年   299篇
  2010年   271篇
  2009年   260篇
  2008年   200篇
  2007年   207篇
  2006年   181篇
  2005年   146篇
  2004年   135篇
  2003年   82篇
  2002年   72篇
  2001年   59篇
  2000年   45篇
  1999年   56篇
  1998年   42篇
  1997年   25篇
  1996年   26篇
  1995年   21篇
  1994年   12篇
  1993年   11篇
  1992年   19篇
  1991年   14篇
  1990年   13篇
  1989年   9篇
  1988年   5篇
  1987年   3篇
  1986年   3篇
  1984年   1篇
  1980年   1篇
  1977年   1篇
  1973年   1篇
  1962年   1篇
  1956年   1篇
  1955年   1篇
排序方式: 共有5413条查询结果,搜索用时 15 毫秒
921.
The need for scientific composting methods for effective utilization of organic waste is increasing day by day. In this respect, a new process called the Novcom composting method is being increasingly adopted by the organic tea planters of Assam and Darjeeling (India) for large-scale composting. Study of the biodegradation process under this method and quality evaluation of the end product was carried out at Maud tea estate (Assam) during 2008–2009 and 2009–2010. Generation of high temperatures (>65°C) within the compost heap during the biodegradation process provided an indication regarding the destruction of pathogens and weed seeds in the composted material. Samples collected on day 0, 7, 14, 21 and 30 of composting, were analyzed for physicochemical properties, nutrient status, microbial population, stability and phytotoxicity parameters. The most significant finding was the high microbial population (in the order of 1016 cfu g?1) in the final product, which was generated naturally during biodegradation. Assessment of the maturity and stability parameters of the compost indicated that biodegradation was complete in ~3 weeks. The study provided an indication of the potential of the Novcom composting method for the production of good quality, stable and mature compost, within a short period.  相似文献   
922.
To understand the responses of rice roots and shoots to non-continuously-flooded soil–water regimes together with varied levels of soil microbial density, studies were conducted evaluating three different water regimes: intermittent flooding (IF) through the vegetative stage (IF-V), IF extended into the reproductive stage (IF-R), and soil maintained with no standing water (NSW); and three levels of soil microbial density: normal, reduced (autoclaved), and enhanced (EMS). At flowering, EMS-treated plants were found to have increased root-length density and greater root oxidizing activity rates under both IF-V and IF-R and more available soil nitrogen (ASN) under IF-V. Earlier senescence of plants grown with EMS was also observed under all water treatments. Water regime was seen to have a major effect on grain yield with a number of causal mechanisms involved. Significant relationships were observed between root oxidizing activity rate (ROA) and ASN, and between ROA and the chlorophyll content of lower leaves. The EMS effects were apparently not caused by microorganisms directly, but rather by differences in ASN facilitated by interaction between water regime and soil microbial activity. The latter would probably vary with different levels of soil organic carbon, but this additional parameter was not investigated. Further study on the role of soil organic matter under similar conditions is warranted for better understanding of these relationships, which have significant effects on rice grain yield.  相似文献   
923.
Knowledge of the effect of a multiple combination of summer/winter crop rotation on the microbiological properties of soil would allow a more adequate response to its use. This study aimed to evaluate the effect of the rotation of three summer crops (continuous soybean, continuous maize and soybean/maize rotation) in combination with seven winter crops (maize, sunflower, oilseed radish, millet, pigeon pea, sorghum and sunn hemp) on the microbiological properties of the soil. A soybean/maize (SM) rotation had a greater influence on microbial biomass than continuous maize (MM) and continuous soybean (SS). Urease and phosphatase activities were not affected by the crop rotation. Dehydrogenase activity was higher in continuous crops (MM and SS) than in SM, whereas respiratory activity was higher in SM than in continuous crops. For the SM rotation, the main variables selected by principal components analysis were microbial biomass C, N and P, respiratory and phosphatase activities, and microbial quotient. Pigeon pea, sorghum and sunn hemp had a greater effect on soil properties than the other winter crops. In general, the degree of influence of the summer and winter crops on the microbiological soil properties can be ranked as follows: SM > MM > SS, and millet > sorghum > sunn hemp > radish > pigeon pea > maize, respectively.  相似文献   
924.
Soil microorganisms play important roles in the plant-soil ecosystem, and plant growth-promoting rhizobacterium (PGPR) promotes plant growth through several mechanisms. To investigate the benefits of PGPR for root functions such as respiration, we used the plant model Cerasus sachalinensis Kom., in which root respiration provides a sensitive functional indicator to demonstrate the effect of soil sterilisation (SS) and inoculation with the PGPR Staphylococcus sciuri ss sciuri after SS on seedling root respiration and growth. Root respiration increased in the presence of PGPR inoculation alone, whereas Embden–Meyerhof–Parnas pathway activity decreased due to reduced phosphofructokinase and pyruvate kinase activities. Although cytochrome c oxidase activity decreased and alternative oxidase activity increased, only slight changes were observed in growth indicators such as seedling height. However, SS and PGPR inoculation after sterilisation reduced soil microbial biomass carbon and reduced root respiration. Pyruvate kinase activity as well as plant height and leaf number increased, thus promoting plant growth. Thus, we conclude that SS and PGPR inoculation altered enzymes activities, root respiration and plant growth of cherry rootstocks. The effects of microbial inoculation were altered by SS.  相似文献   
925.
ABSTRACT

Sustainable agricultural management practices have attracted increasing attention due to their significant roles in benefiting the functions and sustainability of agro-ecosystems. An integrated agricultural practice (IP) in a maize cropping system was developed by changing row spacing, adopting no-tillage and residue return in the Northeast China. A 12-year field study was carried out to evaluate the effect of IP and conventional practice (CP) on soil physical properties, microbial biomass and enzyme activity during the cropping season. The results showed that soil organic matter under IP was increased by 17.4, 9.88 and 6.69% in June, August and October, respectively, than CP. IP enhanced microbial biomass C (by 31.7, 25.1 and 30.4% in June, August and October) and activities of invertase, urease and phosphatase (by 27.2–38.0, 78.9–182 and 9.8–29.0%) compared to CP, possibly attributing to an increase in the soil microbial community. Furthermore, the soil pH, water content, nitrogen and phosphorus contents, microbial biomass and some specific enzyme activities varied with sampling time. It is concluded that IP improved soil quality and health by increasing organic matter content and microbial biomass and activity in maize field in Northeast China, suggesting that IP is a feasible management technology for sustainable agriculture.  相似文献   
926.
ABSTRACT

Management of grassland may affect the dynamics of soil organic carbon (SOC). Objectives were to analyze the effect of different harvesting frequencies and nitrogen fertilization regimes on SOC and total N stocks in a field trial on a sandy loam to loamy sand soil of a grassland site near Kiel (Germany). Additionally, effects on microbial biomass C (Cmic) and ergosterol (as proxy for fungi) contents, water-stable aggregate size-classes and density fractions were studied. In the surface soil (0–10 cm), SOC and total N stocks, amounts of large water-stable macroaggregates (> 2000 µm) and contents of Cmic and ergosterol were significantly higher under a five cut regime. Cmic (rSpearman = 0.61) and ergosterol contents (rSpearman = 0.67) were correlated with amounts of large water-stable macroaggregates suggesting that fungi and microbial biomass play an important role in binding of small macroaggregates into large macroaggregates. The free light fraction of SOM showed significantly higher C concentrations under three cut compared to five cut at 30–60 cm, presumably related to the C/N ratio and the decomposability of root litter. This study indicates the importance of cutting frequency on SOC and total N stocks, amounts of large macroaggregates and contents of Cmic and ergosterol.  相似文献   
927.
ABSTRACT

Arbuscular mycorrhizal (AM) fungi can improve plant phosphorus (P) uptake; however, information about how AM fungi affect rhizosphere organic acid and microbial activity to alleviate citrus low P stress is limited. Here, a pot experiment was conducted to evaluate the effect of AM fungi (Rhizophagus intraradices, Ri) inoculation on rhizosphere organic acid content, microbial biomass (MB) and enzyme activity of trifoliate orange (Poncirus trifoliata L. Raf.) seedlings grown under three low P conditions. The results showed that mycorrhizal seedlings all recorded higher P concentrations, plant biomass and better root morphology with more lateral and fine roots, but lower root mass ratios, irrespective of P conditions. Mycorrhizal P absorption contribution did not differ significantly among three P conditions. Mycorrhizal seedling rhizosphere soil exhibited lower organic acid content, soil organic P content and ratio of MB-carbon (C)/MB-P, but higher MB and enzyme activity. Additionally, the main organic acids showed a negative relationship with mycorrhizal colonization rate and hyphal length; however, phosphatase and phytase activity had a significantly positive relationship with MB. Therefore, the results suggest that AM fungi inoculation may help citrus to efficiently utilize organic P source by improving microbial activity under low available P conditions.  相似文献   
928.
Abstract

Tree clearing is a topical issue the world over. In Queensland, the high rates of clearing in the past were mainly to increase pasture production. The present research evaluates the impact of clearing on some soil biological properties, i.e. total soil respiration, root respiration, microbial respiration, and microbial biomass (C and N), and the response of soil respiration to change in temperature.

In-field and laboratory (polyhouse) experiments were undertaken. For in-field studies, paired cleared and uncleared pasture plots were selected to represent three major tree communities of the region, i.e. Eucalyptus populnea, E. melanophloia, and Acacia harpophylla. The cleared sites were chosen to represent three different time-since-clearing durations (5, 11–13, and 33 years; n=18 for cleared and uncleared plots) to determine the temporal impact of clearing on soil biological properties. Experiments were conducted in the polyhouse to study in detail the response of soil respiration to changes in soil temperature and soil moisture, and to complement in-field studies for estimating root respiration.

The average rate of CO2 emission was 964 g CO2/m2/yr, with no significant difference (P<0.05) among cleared and uncleared sites. Microbial respiration and microbial biomass were greater at uncleared compared with those at cleared sites. The Q 10-value of 1.42 (measured for different seasons in a year) for in-field measurements suggested a small response of soil respiration to soil temperature, possibly due to the limited availability of soil moisture and/or organic matter. However, results from the polyhouse experiment suggested greater sensitivity of root respiration to temperature change than for total soil respiration. Since root biomass (herbaceous roots) was greater at the cleared than at uncleared sites, and root respiration increased with an increase in temperature, we speculate that with rising ambient temperature and consequently soil temperature, total soil respiration in cleared pastures will increase at a faster rate than that in uncleared pastures.  相似文献   
929.
Abstract

The clay mineral composition of two “terra roxa estruturada” (TRE) soils occurring in the tropical rain forest and tropical forest/savannah transition zone, and a reddish brunizem in the savannah/semi-arid transition zone was studied comparatively in the southeast Amazon region.

Kaolin minerals were dominant in these soils, and hematite and goethite were found in the clay fraction. A small amount of 2 : 1-type clay minerals was found in two soils. The mineral composition of the clay fraction in the TRE soils was hardly influenced by the difference of the meteorological factor or their water condition in this region, and this factor should not control the influence of parent materials derived from basic rocks. The TRE soils were developed under the condition of laterite genesis, and were regarded claymineralogically as a kind of the lateritic soils.  相似文献   
930.
Hydroponics is an excellent technique for the cultivation of vegetable crops and other plants, but organic fertilizers cannot be used in conventional hydroponic systems, which generally use only inorganic fertilizers, because organic compounds in the hydroponic solutions generally have phytotoxic effects that lead to poor plant growth. Few microorganisms are present in hydroponic solutions to mineralize the organic compounds into inorganic nutrients. In this article a novel and practical hydroponic culture method that uses microorganisms to degrade organic fertilizer in the hydroponic solution has been developed. Soil microorganisms were cultured by regulating the amounts of organic fertilizer and inoculum, with moderate aeration. The microorganisms mineralized organic nitrogen via ammonification and nitrification into nitrate at an efficiency of 97.6%. The culture solution containing the microorganisms was usable as a hydroponic solution, and organic fertilizer could be directly added to it during vegetable cultivation. Vegetables grew well in the organic hydroponic system. Organic hydroponics based on this method is therefore a practical tool for the utilization of organic sources of fertilizer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号