首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   988篇
  免费   79篇
  国内免费   67篇
林业   50篇
农学   72篇
基础科学   36篇
  476篇
综合类   212篇
农作物   46篇
水产渔业   130篇
畜牧兽医   40篇
园艺   10篇
植物保护   62篇
  2024年   8篇
  2023年   30篇
  2022年   47篇
  2021年   43篇
  2020年   61篇
  2019年   47篇
  2018年   42篇
  2017年   37篇
  2016年   52篇
  2015年   57篇
  2014年   46篇
  2013年   65篇
  2012年   57篇
  2011年   84篇
  2010年   69篇
  2009年   58篇
  2008年   47篇
  2007年   46篇
  2006年   43篇
  2005年   36篇
  2004年   26篇
  2003年   17篇
  2002年   17篇
  2001年   5篇
  2000年   9篇
  1999年   10篇
  1998年   8篇
  1997年   7篇
  1996年   14篇
  1995年   8篇
  1994年   4篇
  1993年   12篇
  1992年   5篇
  1991年   6篇
  1990年   5篇
  1989年   3篇
  1987年   2篇
  1986年   1篇
排序方式: 共有1134条查询结果,搜索用时 15 毫秒
101.
In this study we used compound specific 13C and 14C isotopic signatures to determine the degree to which recent plant material and older soil organic matter (SOM) served as carbon substrates for microorganisms in soils. We determined the degree to which plant-derived carbon was used as a substrate by comparison of the 13C content of microbial phospholipid fatty acids (PLFA) from soils of two sites that had undergone a vegetation change from C3 to C4 plants in the past 20-30 years. The importance of much older SOM as a substrate was determined by comparison of the radiocarbon content of PLFA from soils of two sites that had different 14C concentrations of SOM.The 13C shift in PLFA from the two sites that had experienced different vegetation history indicated that 40-90% of the PLFA carbon had been fixed since the vegetation change took place. Thus PLFA were more enriched in 13C from the new C4 vegetation than it was observed for bulk SOM indicating recent plant material as preferentially used substrate for soil microorganisms. The largest 13C shift of PLFA was observed in the soil that had high 14C concentrations of bulk SOM. These results reinforce that organic carbon in this soil for the most part cycles rapidly. The degree to which SOM is incorporated into microbial PLFA was determined by the difference in 14C concentration of PLFA derived from two soils one with high 14C concentrations of bulk SOM and one with low. These results showed that 0-40% of SOM carbon is used as substrate for soil microorganisms. Furthermore a different substrate usage was identified for different microorganisms. Gram-negative bacteria were found to prefer recent plant material as microbial carbon source while Gram-positive bacteria use substantial amounts of SOM carbon. This was indicated by 13C as well as 14C signatures of their PLFA. Our results find evidence to support ‘priming’ in that PLFA indicative of Gram-negative bacteria associated with roots contain both plant- and SOM-derived C. Most interestingly, we find PLFA indicative of archeobacteria (methanothrophs) that may indicate the use of other carbon sources than plant material and SOM to a substantial amount suggesting that inert or slow carbon pools are not essential to explain carbon dynamics in soil.  相似文献   
102.
Rice fields are an important source for atmospheric CH4, but the effects of fertilization are not well known. We studied the turnover of CH4 in rice soil microcosms without and with addition of potassium phosphate. Height and tiller number of rice plants were higher in the fertilized than in the unfertilized microcosms. Emission rates of CH4 were also higher, but porewater concentrations of CH4 were lower. The δ13C values of the emitted CH4 and of the CH4 in the porewater were both 2-6% higher in the fertilized microcosms than in the control. Potassium phosphate did not affect rate and isotopic signature of CH4 production in anoxic soil slurries. On the other hand, roots retrieved from fertilized microcosms at the end of incubation exhibited slightly higher CH4 production rates and slightly higher CH4-δ13C values compared to roots from unfertilized plants. Addition of potassium phosphate to excised rice roots generally inhibited CH4 production and resulted in increasingly lower δ13C values of the produced CH4. Fractionation of 13C during plant ventilation (i.e. δ13C in pore water CH4 versus CH4 emitted) was larger in the fertilized microcosms than in the control. Besides plant ventilation, this difference may also have been caused by CH4 oxidation in the rhizosphere. However, calculation from the isotopic data showed that less than 27% of the produced CH4 was oxidized. Collectively, our results indicate that potassium phosphate fertilization stimulated CH4 emission by enhancing root methanogenesis, plant ventilation and/or CH4 oxidation, resulting in residence times of CH4 in the porewater in the order of hours.  相似文献   
103.
Soils are structurally heterogeneous across a wide range of spatio-temporal scales. Consequently, external environmental conditions do not have a uniform effect throughout the soil, resulting in a large diversity of micro-habitats. It has been suggested that soil function can be studied without explicit consideration of such fine detail, but recent research has indicated that the micro-scale distribution of organisms may be of importance for a mechanistic understanding of many soil functions. Current techniques still lack the adequate sensitivity and resolution for data collection at the micro-scale, and the question ‘How important are various soil processes acting at different scales for ecological function?’ is therefore challenging to answer. The nano-scale secondary ion mass spectrometer (NanoSIMS) represents the latest generation of ion microprobes, which link high-resolution microscopy with isotopic analysis. The main advantage of NanoSIMS over other secondary ion mass spectrometers is its ability to operate at high mass resolution, whilst maintaining both excellent signal transmission and spatial resolution (down to 50 nm). NanoSIMS has been used previously in studies focussing on presolar materials from meteorites, in material science, biology, geology and mineralogy. Recently, the potential of NanoSIMS as a new tool in the study of biophysical interfaces in soils has been demonstrated. This paper describes the principles of NanoSIMS and discusses the potential of this tool to contribute to the field of biogeochemistry and soil ecology. Practical considerations (sample size and preparation, simultaneous collection of isotopes, mass resolution, isobaric interference and quantification of the isotopes of interest) are discussed. Adequate sample preparation, avoiding bias due to artefacts, and identification of regions-of-interest will be critical concerns if NanoSIMS is used as a new tool in biogeochemistry and soil ecology. Finally, we review the areas of research most likely to benefit from the high spatial and high mass resolution attainable with this new approach.  相似文献   
104.
The goal of this study was to examine spatial variation of soil organic C and its stable isotopic composition (δ13C) in 1-ha plots of mature rain forest and a cattle pasture dominated by C4 grasses in Costa Rica. Soil samples were taken from 80 mapped locations per plot and analyzed for organic C and δ13C. The range of values for soil C concentrations was similar between forest and pasture, although the mean values were higher in the forest. δ13C was narrowly constrained in the forest (from −27.96 to −26.09‰) but varied from −15.09 to −28.59‰ in the pasture. Variograms revealed spatial autocorrelation of soil C and δ13C in the pasture and organic C concentration in the forest soil. The large range and spatial variability of δ13C in the pasture site may be due to varying contributions of C3 and C4 vegetation to the soil C pool, which may limit the usefulness of the natural abundance technique as a precise tracer of soil C dynamics in this pasture.  相似文献   
105.
Owing to the continuously increasing concentration of atmospheric CO2, it has become a priority to understand if soil organic matter (SOM) will behave as a sink or a source of CO2 under future environmental changes. Although many studies have addressed this question, a clear understanding is still missing, particularly with respect to long-term responses. In this study, we quantified soil C stores and dynamics in relationship to soil aggregation and pool composition in a Californian chaparral ecosystem exposed for 6 years to a gradient of atmospheric CO2 concentrations, ranging from pre-industrial levels 250 to 750 μl l−1 CO2. Fossil fuel-derived CO2 depleted in 13C was used for the fumigation, thus providing a tracer of C input from the vegetation to the soil.Long-term CO2 exposure invariably affected soil aggregation, with a significant decrease in the macroaggregate fraction at highest CO2 levels relative to the other two size fractions (i.e. microaggregates and silt and clay). This soil structural change most likely reduced the stability and protection of SOM, and C content generally decreased in most fractions over the CO2 treatments, and induced faster turnover of recently fixed C at high CO2 levels. The strongest response was found in the C content of the microaggregates, which decreased significantly (P<0.05) with rising levels of CO2. We conclude that increasing atmospheric CO2 concentrations will decrease soil C in chaparral ecosystems, and that the microaggregate fraction is the most responsive to increasing concentrations of atmospheric CO2.  相似文献   
106.
该研究以糙米为原料,应用同位素示踪技术研究糙米加湿调质各工艺参数对精米吸水率的影响规律。在糙米加湿调质中用氚水(H23O)为同位素示踪剂对所加水分标记,通过放射性测量(cpm值)确定样品吸水率;采用二次旋转正交组合试验方法设计试验,用Reda软件包处理试验数据,得出了各试验参数对精米吸水率影响关系的回归方程,分析了各试验因素对精米吸水率的影响规律,试验结论可以为掌控糙米加湿调质后精米含水率提供理论依据。  相似文献   
107.
Abstract. Nitrogen (N) loss by leaching poses great challenges for N availability to crops as well as nitrate pollution of groundwater. Few studies address this issue with respect to the role of the subsoil in the deep and highly weathered savanna soils of the tropics, which exhibit different adsorption and drainage patterns to soils in temperate environments. In an Anionic Acrustox of the Brazilian savanna, the Cerrado, dynamics and budgets of applied N were studied in organic and inorganic soil pools of two maize (Zea mays L.) – soybean (Glycine max (L.) Merr.) rotations using 15N tracing. Labelled ammonium sulphate was applied at 10 kg N ha?1 (with 10 atom%15N excess) to both maize and soybean at the beginning of the cropping season. Amounts and isotopic composition of N were determined in above‐ground biomass, soil, adsorbed mineral N, and in soil solution at 0.15, 0.3, 0.8, 1.2 and 2 m depths using suction lysimeters throughout one cropping season. The applied ammonium was rapidly nitrified or immobilized in soil organic matter, and recovery of applied ammonium in soil 2 weeks after application was negligible. Large amounts of nitrate were adsorbed in the subsoil (150–300 kg NO3?‐N ha?1 per 2 m) matching total N uptake by the crops (130–400 kg N ha?1). Throughout one cropping season, more applied N (49–77%; determined by 15N tracers) was immobilized in soil organic matter than was present as adsorbed nitrate (2–3%). Most of the applied N (71–96% of 15N recovery) was found in the subsoil at 0.15–2 m depth. This coincided with an increase with depth of dissolved organic N as a proportion of total dissolved N (39–63%). Hydrophilic organic N was the dominant fraction of dissolved organic N and was, together with nitrate, the most important carrier for applied N. Most of this N (>80%) was leached from the topsoil (0–0.15 m) during the first 30 days after application. Subsoil N retention as both adsorbed inorganic N, and especially soil organic N, was found to be of great importance in determining N losses, soil N depletion and the potential of nitrate contamination of groundwater.  相似文献   
108.
青藏高原中部土壤水中稳定同位素变化   总被引:29,自引:0,他引:29  
根据 1 998年夏季测得的青藏高原中部那曲地区降水和土壤水中稳定同位素 ,分析了不同层位土壤剖面中稳定同位素的变化规律及与水分迁移的关系。研究结果发现 ,土壤表层水中δ1 8O受降水中δ1 8O的直接影响 ,并且与降水中δ1 8O有相同的变化趋势 ,而地下水中δ1 8O受降水中δ1 8O的直接影响不明显 ,变化幅度很小 ,表明地下水并非直接来源于当年夏季的降水 ,可能代表了多年降水的平均状态。不同土壤剖面水中δ1 8O的变化反映了降水向地下逐渐渗浸的过程。表层土壤水中δ1 8O受降水的影响最为明显 ,而向下土壤水中δ1 8O受地下水δ1 8O的影响增强 ,显示出地下水在土壤水分活动中起着活跃的作用。  相似文献   
109.
Tracing organic matter (OM) in soil is challenging, because runoff and leaching processes are interrelated and have multiple sources. Therefore, multiple tracers with low background concentrations such as rare earth element oxides (REOs) are necessary to delineate the origin of sources of the organic materials in groundwater, rivers or in catchments. The main objective of this study was to examine the potential use of REOs as a tracer in various forms of OM (1) whole slurry, (2) solid, and (3) liquid phase of cattle slurry after mechanical separation. A laboratory experiment was carried out using five REOs (La, Gd, Sm, Pr, and Nd oxides) mixed directly into soil or mixed with various fractions of cattle slurry and then applied to the soil surface. In the additional grassland experiment, Gd oxide was spiked with soil and cattle slurry and then applied to the soil surface. The mineral N in the liquid phase (urine) of the slurry in the grassland experiment was labelled with 15N urea (16 atom%). In the laboratory experiment, results showed that the five REOs concentration of soil in 0–1 cm soil section after the rainfall simulation was still up to 20 times more than the background values. In 1–2 cm soil section, the concentration of only Gd (two fold higher) and La oxides (50% higher) were significantly higher than the soil background values. Therefore, we hypothesized that Gd and La oxides were associated also with relatively finer organic particles in slurry, thus 1–2 cm soil section were enriched with these oxides. The five REOs concentration below 2 cm soil depth were similar to the background values in all treatments. In line with the laboratory experiment, Gd concentrations in the deeper soil layers (2–4 and 4–8 cm) in the grassland experiment were not significantly affected by any treatment. Both in grassland and laboratory experiment, solid phase of the slurry (dung) was collected from the soil surface after rainfall simulation. Here, about 56% of REOs were measured on the solid phase of the slurry which indicates the strong binding potential of REOs on slurry OM. The present novel study, where REO tagged slurry was uniquely tested to study geochemical cycle of organic fertilizers, clearly highlighted the potential for their use as multiple‐tracers of (animal derived‐) OM in agricultural soils.  相似文献   
110.
YING-CHOU  LEE  HUANG-HAUR  KUO  YUE-GAU  CHEN 《Fisheries Science》2002,68(5):1020-1028
The discrimination between wild and released Taiwan abalone Haliotis diversicolor was performed by stable carbon isotope analysis. Abalone samples were collected from Mao Aw Gulf in north-eastern Taiwan. Live abalone and dead shells were collected by divers with an 80 × 80 cm frame. The densities and amounts of wild and released abalone, as well as the survival rates of released abalone, in 1997 and 1998 were estimated. The age of the specimens was also determined from the specific temperature of each month and the inverse relationship between oxygen isotope values and temperatures. Results show that examining stable isotopic profiles proves to be a practical and feasible method for stock discrimination as well as density and abundance estimation. These data would be helpful in assessing the success of abalone culture and release programs, which aim to enhance this valuable marine resource.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号