首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   5篇
  国内免费   2篇
林业   1篇
农学   2篇
基础科学   2篇
  2篇
综合类   4篇
水产渔业   61篇
畜牧兽医   1篇
园艺   1篇
  2022年   1篇
  2021年   9篇
  2020年   4篇
  2019年   7篇
  2018年   4篇
  2017年   9篇
  2016年   7篇
  2015年   5篇
  2014年   6篇
  2013年   3篇
  2012年   4篇
  2011年   2篇
  2009年   3篇
  2008年   4篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2000年   1篇
排序方式: 共有74条查询结果,搜索用时 0 毫秒
31.
Intensive recirculating aquaculture systems (RAS) with its hyper-eutrophic water offer ideal conditions for bacterial growth, abundance and activity, potentially affecting fish and system performance. Feed composition and feed loading in particular will have significant impact on organic and inorganic nutrients available for microbial growth in RAS. How these nutrient inputs affect and regulate bacteria in RAS water is, however, unclear. To investigate this relationship and the associated water quality dynamics, the effects of altered feed loading on microbial water quality in RAS was studied.The study included six independent, identical pilot-scale RAS, each with a total volume of 1.7 m3 (make-up water: 80 L/day) stocked with juvenile rainbow trout (Oncorhynchus mykiss). All systems had been operating with constant and identical feed loading of 3.13 kg feed/m3 make-up water for a period of three months before the experiment was initiated. Three controlled levels of feed loading where established in duplicates: no feed (0 kg feed/m3), unchanged feeding (3.13 kg feed/m3), and doubled feeding (6.25 kg feed/m3). The experimental period was seven weeks, where microbial and chemical water quality was monitored weekly. Bacterial activity was measured using Bactiquant®, and microbial hydrogen peroxide degradation. Bacterial abundance was quantified by flow cytometry, and water quality parameters by standardized methods The study showed that water quality as well as bacterial activity and abundance were affected by the changes in feed loading. The microbial water quality parameters, however, did not respond to feed loading changes as quickly and straightforward as the physicochemical parameters such as nitrate, chemical oxygen demand and biological oxygen demand. It was presumed that the fixed bed biofilter suppressed microbial response in the water phase. Hydrogen peroxide degradation assay proved to have considerable potential for assessing overall bacterial load in RAS water although further adjustments and standardization procedures are required.  相似文献   
32.
A step toward environmental sustainability of recirculat aquaculture systems (RAS) is implementation of single-sludge denitrification, a process eliminating nitrate from the aqueous environment while reducing the organic matter discharge simultaneously. Two 1700 L pilot-scale RAS systems each with a 85 L denitrification (DN) reactor treating discharged water and hydrolyzed solid waste were setup to test the kinetics of nitrate and COD removal. Nitrate removal and COD reduction efficiency was measured at two different DN-reactor sludge ages (high θX: 33–42 days and low θX: 17–23 days). Nitrate and total N (NO3 + NO2 + NH4+) removal of the treated effluent water ranged from 73–99% and 60–95% during the periods, respectively, corresponding to an overall maximum RAS nitrate removal of approximately 75%. The specific nitrate removal rate increased from 17 to 23 mg NO3-N (g TVS d)−1 and the maximal potential DN rate (measured at laboratory ideal conditions) increased correspondingly from 64–68 mg NO3-N (g TVS d)−1 to 247–294 mg NO3-N (g TVS d)−1 at high and low θX, respectively. Quantification of denitrifiers in the DN-reactors by qPCR showed only minor differences upon the altered sludge removal practice. The hydrolysis unit improved the biodegradability of the solid waste by increasing volatile fatty acid COD content 74–76%. COD reductions in the DN-reactors were 64–70%. In conclusion, this study showed that single-sludge denitrification was a feasible way to reduce nitrate discharge from RAS, and higher DN rates were induced at lower sludge age/increased sludge removal regime. Improved control and optimization of reactor DN-activity may be achieved by further modifying reactor design and management scheme as indicated by the variation in and between the two DN-reactors.  相似文献   
33.
循环水养殖系统的关键技术是养殖废水的处理和再利用。作为循环水养殖系统水处理的核心单元,生物膜对于养殖水体中污染物的去除起着至关重要的作用。水温、盐度、pH和溶氧等环境因子都会影响生物膜的功能,环境因子的突然变化会引起生物膜脱落、影响循环水养殖系统生物膜的形成过程及运行效果。控制好水温、盐度、pH和溶氧,生物膜净化效率就能达到较为理想的状态,养殖废水的处理效果就会更好。因此,有必要研究各个环境因子变量条件下的养殖废水去除动力学特征,以期为循环水养殖系统优化设计与运行管理提供理论依据。  相似文献   
34.
Life cycle assessment (LCA), a tool used to assess the environmental impacts of products and processes, has been used to evaluate a range of aquaculture systems. Eighteen LCA studies were reviewed which included assessments of recirculating aquaculture systems (RAS), flow-through systems, net cages, and pond systems. This review considered the potential to mitigate environmental burdens with a movement from extensive to intensive aquaculture systems. Due to the diversity in study results, specific processes (feed, energy, and infrastructure) and specific impact categories (land use, water use, and eutrophication potential) were analyzed in-depth. The comparative analysis indicated there was a possible shift from local to global impacts with a progression from extensive to intensive systems, if mitigation strategies were not performed. The shift was partially due to increased electricity requirements but also varied with electricity source. The impacts from infrastructure were less than 13 % of the environmental impact and considered negligible. For feed, the environmental impacts were typically more dependent on feed conversion ratio (FCR) than the type of system. Feed also contributed to over 50 % of the impacts on land use, second only to energy carriers. The analysis of water use indicated intensive recirculating systems efficiently reduce water use as compared to extensive systems; however, at present, studies have only considered direct water use and future work is required that incorporates indirect and consumptive water use. Alternative aquaculture systems that can improve the total nutrient uptake and production yield per material and energy based input, thereby reducing the overall emissions per unit of feed, should be further investigated to optimize the overall of aquaculture systems, considering both global and local environmental impacts. While LCA can be a valuable tool to evaluate trade-offs in system designs, the results are often location and species specific. Therefore, it is critical to consider both of these criteria in conjunction with LCA results when developing aquaculture systems.  相似文献   
35.
循环水高密度养殖珍珠龙胆石斑鱼效果研究   总被引:1,自引:0,他引:1  
为研究循环水高密度养殖珍珠龙胆石斑鱼[Epinephelus lanceolatu(♂)×Epinephelus fuscoguttatus(♀)]的养殖效果,在自行研制的循环水养殖系统中进行了试验。试验中对珍珠龙胆石斑鱼生长指标及养殖系统主要水质指标进行分析测定。结果显示,养殖期间的水质指标:水温26~29℃,盐度25~30,溶氧(DO)≥8 mg/L,氨氮浓度0.20~1.16 mg/L,亚硝酸盐氮0.05~0.40 mg/L。试验共持续250 d,分3个生长阶段:第1阶段87 d,密度由13.82 kg/m3增加到28.89 kg/m3,存活率95.28%,平均体重由(150±18)g增加到(329±42)g,特定生长率(SGR)为(0.90±0.06)%;第2阶段106 d,密度由28.89 kg/m3增加到53.36 kg/m3,存活率90.44%,平均体重由(329±42)g增加到(672±66)g,SGR为(0.67±0.02)%;第3阶段57 d,密度由46.98 kg/m3增加到69.50 kg/m3,存活率98.6%,平均体重由(676±52)g增加到(1 014±75)g,SGR为(0.71±0.02)%。养殖期间的平均SGR为(0.76±0.02)%,总存活率84.9%,饲料系数1.04,投入产出比为1∶2.02。本研究成果可为高密度养殖珍珠龙胆石斑鱼提供参考。  相似文献   
36.
The paper addresses two potential applications for electrochemical ammonia oxidation within the operation of recirculating aquaculture systems, in which nearly complete removal of N species is required. In one described application, a physical–chemical ammonia oxidation method is suggested to entirely replace conventional biological treatment methods (i.e. nitrification/denitrification). The second described method is suggested as a final polishing step for removing ammonia from effluents of denitrification reactors supplied with intrinsic organic matter, prior to the discharge of the water. Empirical results and cost assessment are reported for the second alternative, while the first, which was recently published, is discussed with respect to improvements, operational conditions and field tests required to induce its commercial application. The polishing alternative was shown capable of efficiently removing TAN in the effluents of RAS denitrification reactors fed with intrinsic organic solids. The cost for treating denitrification reactor effluents with TAN concentration of 10 mgN/L was estimated at 6.67 cent/m3 of discharged water. Since the chloride ion concentration in seawater and in most brackish waters is high, combining the intrinsic organic carbon denitrification process with subsequent ammonia polishing by electrochemically produced active chlorine may be a competitive approach for the removal of nitrogen species from seawater and brackish water RAS.  相似文献   
37.
Grading of cultured flatfish is essential to maintain even sizes and to avoid potential feeding dominance or cannibalism. Current hand-grading and forced mechanical grading methods result in labour costs and additional stress to animals, reducing their growth performance. This study tested a self-grading system allowing turbot (Scophthalmus maximus) to self-grade, based on size, between tank sections within 8000 L tanks designated as “Graded (G)” and “Non-Graded (NG)”. The grading success (percentage of graded animals/total gradable individuals) with stimuli (light, feeding sequence and colour of the grading device) and without stimuli was analyzed over 9 days. Mean grading success without stimuli was 38.1 ± 11.5%. Grading success was not improved by changes in feeding sequence (30.6 ± 10.2%) or altered colour of the grading device (30.9 ± 13.8%). Marked increases in grading success were obtained by adding a light source to the G section (52.9 ± 12.4%), and by combining the presence of a light source and the feeding sequence (57.9 ± 14.4%). The combination of light sources and changes to the colour of the self-grading device resulted in the highest mean grading success (72.1 ± 18.2%) overall. Light and colour stimuli combined yielded the highest self-grading maximum (88.36 ± 5.3%), achieved on day 6 after experimental onset. A three-parameter asymptotic exponential equation was fitted to the data from each stimulus and parameters describing the curves of all conditions are reported. The present results indicate that the tested self-grading systems for turbot can be highly efficient if used with the appropriate stimuli. Self-grading systems operating at the measured levels of success offer a viable alternative to stressful grading events, avoiding significant commercial disadvantages as well as improving animal welfare and performance.  相似文献   
38.
Seeking the most suitable model to describe the growth of turbot, we analysed growth data of two different turbot (Scophthalmus maximus) strains reared communally in a recirculating aquaculture system. We fitted 10 different nonlinear growth models to individual weight gain data (n = 2,010) during the grow‐out phase. Analyses were carried out for each strain, for sexes within strains and for a pooled data set containing both strains and sexes. To assess the model performance, three different criteria are used. Further, a growth‐simulation was performed to evaluate the shape of the generated curve. This way we could assess the capability of the models to predict future growth. The 3‐parametric Gompertz model achieved the best fit in 42.9% of all cases tested and the lowest Bayesian information criterion in 100% of cases. The model produced realistically shaped curves and asymptotic values matching the biological attributes of the species. In contrast, 5‐parametric functions projected unrealistically shaped curves and predicted improbable mature sizes. Our results show that increasing number of parameters do not lead to increasing goodness of fit, but tend to result in overfitting, and demonstrate the advantages of the 3‐parametric Gompertz model for describing the growth of turbot.  相似文献   
39.
The effects of sub-lethal CO2(aq) concentrations were tested for the first time on gilthead seabream (Sparus aurata) juveniles (4–25 g; 64 growth days) and adult (∼300–400 g; 71 d) fish, both in fully controlled pilot tests and the latter also as part of full-scale RAS (recirculating aquaculture system) operation. In the pilot experiments (concentration range 5.2–56.3 mg CO2/L) the specific growth rate, mortality rate, and physical fish disorders were monitored. In the full scale experiment, two groups of fish, originally from the same batch, were exposed for 197 d to controlled (by NaOH dosage) and uncontrolled pH conditions, resulting in exposure of the fish to significantly different CO2(aq) concentrations. The pilot results showed, as expected, that the seabream fish grew faster at the lower CO2 concentrations and that the growth rate of both juveniles and adult fish was only minimally inhibited up to roughly 20 mg CO2/L (compared to a previously published curve). Mortality rate was considerable only at the highest CO2 concentration (∼56 mg CO2/L). Physical irregularities were not observed, apart from abnormally high absence of swim bladder at the highest CO2(aq) treatment. The (statistically significant) results from the full-scale RAS operation showed that growing gilthead seabream for 197 d at roughly constant and relatively low (∼16 mg/L) CO2(aq) concentration resulted in fish with ∼10% larger mean weight relative to the fish grown in ponds in which CO2(aq) was not controlled and its concentration fluctuated daily between 19 and 37 mg/L.  相似文献   
40.
白斑综合征病毒(WSSV)是对虾养殖中主要的病原之一,病原与宿主作用是介导病毒感染的重要过程。RAS蛋白是Ras基因分泌的保守蛋白,为小G蛋白家族的一员,普遍存在于从酵母菌到哺乳动物的真核细胞中,具有偶联受体和效应系统传递跨膜信号的功能,在细胞增殖和分化中起双重调节的作用,但关于RAS与WSSV的作用尚不明确。本研究将凡纳滨对虾(Litopenaeus vannamei) Ras基因克隆至pBAD/gⅢA表达载体上,以E. coli Top10为宿主菌,在L-阿拉伯糖的诱导下获得RAS重组蛋白。以Co~(2+)亲和层析方法,获得纯化的RAS蛋白,质谱分析显示,该蛋白为凡纳滨对虾RAS。采用Far-western和ELISA检测方法分析RAS与WSSV结构蛋白VP26、VP28N和VP37的相互作用。Far-western结果显示,RAS与VP26有明显的结合作用,ELISA实验结果显示,RAS与VP26蛋白的相互作用随RAS量的增加而增强。本研究表明,RAS参与WSSV侵染过程,为进一步研究WSSV侵染机制提供了理论基础。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号