首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1515篇
  免费   108篇
  国内免费   95篇
林业   80篇
农学   100篇
基础科学   6篇
  416篇
综合类   404篇
农作物   84篇
水产渔业   278篇
畜牧兽医   186篇
园艺   72篇
植物保护   92篇
  2024年   19篇
  2023年   40篇
  2022年   54篇
  2021年   64篇
  2020年   52篇
  2019年   54篇
  2018年   39篇
  2017年   63篇
  2016年   62篇
  2015年   78篇
  2014年   75篇
  2013年   110篇
  2012年   74篇
  2011年   98篇
  2010年   107篇
  2009年   83篇
  2008年   78篇
  2007年   94篇
  2006年   87篇
  2005年   66篇
  2004年   54篇
  2003年   34篇
  2002年   34篇
  2001年   16篇
  2000年   30篇
  1999年   13篇
  1998年   14篇
  1997年   21篇
  1996年   12篇
  1995年   13篇
  1994年   14篇
  1993年   19篇
  1992年   5篇
  1991年   13篇
  1990年   15篇
  1989年   6篇
  1988年   5篇
  1987年   3篇
排序方式: 共有1718条查询结果,搜索用时 296 毫秒
11.
Intensive land use practices necessary for providing food and raw materials are known to have a deleterious effect on soil. However, the effects that such practices have on soil microbes are less well understood. To investigate the effects of land use intensification on soil microbial communities we used a combined T-RFLP and pyrosequencing approach to study bacteria, archaea and fungi in spring and autumn at five long term observatories (LTOs) in Europe; each with a particular land use type and contrasting levels of intensification (low and high). Generally, due to large gradients in soil variables, both molecular methods revealed that soil microbial communities were structured according to differences in soil conditions between the LTOs, more so than land use intensity. Moreover, variance partitioning analysis also showed that soil properties better explained the differences in microbial communities than land use intensity effects. Predictable responses in dominant bacterial, archaeal and fungal taxa to edaphic conditions (e.g. soil pH and resource availability) were apparent between the LTOs. Some effects of land use intensification at individual field sites were observed. However, these effects were manifest when land use change affected soil conditions. Uniquely, this study details the responses of different microbial groups to soil type and land use intensification, and their relative importance across a range of European field sites. These findings reinforce our understanding of drivers impacting soil microbial community structure at both field and larger geographic scales.  相似文献   
12.
Water stress, with its negative consequences on plant growth and survival, can be mitigated by Azospirillum brasilense inoculation. In tomato, A. brasilense delays wilting caused by a vascular pathogen, Clavibacter michiganensis subsp. michiganensis, by yet unknown mechanisms. We studied morphological, anatomical and physiological changes induced by A. brasilense in tomato that relate to water stress tolerance, which could explain the deferral in symptom expression. For this purpose, tomato seeds were treated or not with A. brasilense BNM65, and 5 weeks later plants were challenged with C. michiganensis subsp. michiganensis or mock inoculated with water. There was a large growth promotion associated to Azospirillum: treated plants had higher total biomass and leaf area. In relation to water stress tolerance, Azospirillum treated plants had larger xylem vessel area, higher stem specific hydraulic conductivity, thicker stems, and lower shoot/root dry matter and specific leaf area. These changes were opposite to those induced by C. michiganensis subsp. michiganensis. We conclude that A. brasilense favoured a better adjustment of plant-water relations by several mechanisms, and thus, transitorily alleviated symptoms expression of a vascular disease.  相似文献   
13.
Here, we examine soil-borne microbial biogeography as a function of the features that define an American Viticultural Area (AVA), a geographically delimited American wine grape-growing region, defined for its distinguishing features of climate, geology, soils, physical features (topography and water), and elevation. In doing so, we lay a foundation upon which to link the terroir of wine back to the soil-borne microbial communities. The objective of this study is to elucidate the hierarchy of drivers of soil bacterial community structure in wine grape vineyards in Napa Valley, California. We measured differences in the soil bacterial and archaeal community composition and diversity by sequencing the fourth variable region of the small subunit ribosomal RNA gene (16S V4 rDNA). Soil bacterial communities were structured with respect to soil properties and AVA, demonstrating the complexity of soil microbial biogeography at the landscape scale and within the single land-use type. Location and edaphic variables that distinguish AVAs were the strongest explanatory factors for soil microbial community structure. Notably, the relationship with TC and TN of the <53 μm and 53–250 μm soil fractions offers support for the role of bacterial community structure rather than individual taxa on fine soil organic matter content. We reason that AVA, climate, and topography each affect soil microbial communities through their suite of impacts on soil properties. The identification of distinctive soil microbial communities associated with a given AVA lends support to the idea that soil microbial communities form a key in linking wine terroir back to the biotic components of the soil environment, suggesting that the relationship between soil microbial communities and wine terroir should be examined further.  相似文献   
14.
Blood transfusions in veterinary medicine have become increasingly more common and are now an integral part of lifesaving and advanced treatment in small and large animals. Important risks associated with transfusion of blood products include the transmission of various infectious diseases. Several guidelines suggest what infectious agents to screen for in canine and feline transfusion medicine. However, while the risk of bacterial contamination of blood products during storage and administration has not been documented in veterinary medicine, it has emerged as a cause of morbidity and mortality in human transfusion medicine. Clinical experience shows that the majority of blood component bacterial contaminations are caused by only a few species. Unlike other types of bacteria, psychrotolerant species like Pseudomonas spp. and Serratia spp. can proliferate during the storage of blood units at 4°C from a very low titer at the time of blood collection to a clinically significant level (> 105 CFU/mL) causing clinical sepsis resulting from red blood cell concentrate transfusions in human medicine. The purpose of this report was to describe the detection and quantification procedures applied in 4 cases of bacterial contamination of canine and feline blood units, which suggest the need for further investigations to optimize patients’ safety in veterinary transfusion medicine.  相似文献   
15.
对28个樱桃番茄品种的田间抗病性、植株类型、单果质量、果色、可溶性固形物含量等主要经济性状进行调查。试验结果表明,感病品种红艳发病最重,发病率为73.67%,其次是红箭、红日和金艳,发病率分别为23.33%、21.67%和20.33%,其他品种发病率都在20%以下;28个品种的果实颜色、大小、口感等差异明显,除黑宝石映泰及黄金蛋可溶性固形物含量在4.10%以下外,其他品种可溶性固形物含量都达5.20%以上。综合分析,筛选出绿天使、粉仙、红娘9号、绿圆、格丽贝、红椭圆等11个抗青枯病且经济性状优良的樱桃番茄品种,为优质抗青枯病樱桃番茄的选育和推广提供了参考。  相似文献   
16.
云南高原粳稻抗白叶枯病新品系云资抗21号的选育   总被引:1,自引:0,他引:1  
以高产优质的云南高原粳稻品种滇系4号为轮回亲本,以IRBB21为白叶枯病抗性基因Xa21的供体亲本,通过杂交和3次回交以及5次自交形成BC3F,代材料,并结合后代材料的白叶枯病抗性鉴定及农艺性状的评价选择,选育出高原粳稻新品系云资抗21号,对云资抗21号的21个单株采用与Xa21连锁标记RM21和RM229、以及22个独立分离的SSR标记进行检测,结果表明这21个单株在RM21位点上均为IRBB21的纯合基因型,在RM229位点上有1个单株显示为轮回亲本的纯合基因型,其余的20个单株均为IRBB21的纯合基因型,而在其余22个SSR标记位点上均显示为轮回亲本的纯合基因型。该新品系白叶枯病抗性与IRBB21相近,农艺性状与轮回亲本相似,具有很好的应用前景。  相似文献   
17.
Calculations and analyses are made with the CVDA, IIW, JWES standards for the strength and welding defects of two spherical tanks of natural gas in CHONG QING. The results of the analyses indecate that though there are some problems with the welding quality in these tanks, they may still be used with the desingned presure. Now the formal working of these two spherical thanks has verified of the validity the calculations and analyses.  相似文献   
18.
Vegetable soils with high nitrogen input are major sources of nitrous oxide (N2O) and nitric oxide (NO), and incorporation of the nitrification inhibitor 3, 4-dimethylpyrazole phosphate (DMPP) into soils has been documented to effectively reduce emissions. However, the efficiency of DMPP in terms of soil N2O and NO mitigations varies greatly depending on soil temperature and moisture levels. Thus, further evaluations of DMPP efficiency in diverse environments are required to encourage widespread application. A laboratory incubation study (28 d) was established to investigate the interactive effects of DMPP, temperature (15, 25, and 35 ℃), and soil moisture (55% and 80% of water-holding capacity (WHC)) on net nitrification rate, N2O and NO productions, and gene abundances of nitrifiers and denitrifiers in an intensive vegetable soil. Results showed that incubating soil with 1% DMPP led to partial inhibition of the net nitrification rate and N2O and NO productions, and the reduction percentage of N2O production was higher than that of NO production (69.3% vs. 38.2%) regardless of temperature and soil moisture conditions. The increased temperatures promoted the net nitrification rate but decreased soil N2O and NO productions. Soil moisture influenced NO production more than N2O production, decreasing with the increased moisture level (80%). The inhibitory effect of DMPP on cumulative N2O and NO productions decreased with increased temperatures at 55% WHC. Conversely, the inhibitory effect of DMPP on cumulative N2O production increased with increased temperatures at 80% WHC. Based on the correlation analyses and automatic linear modeling, the mitigation of both N2O and NO productions from the soil induced by DMPP was attributed to the decreases in ammonia-oxidizing bacteria (AOB) amoA gene abundance and NO-2-N concentration. Overall, our study indicated that DMPP reduced both N2O and NO productions by regulating the associated AOB amoA gene abundance and NO-2-N concentration. These findings improve our insights regarding the implications of DMPP for N2O and NO mitigations in vegetable soils under various climate scenarios.  相似文献   
19.
【目的】土壤中存在着大量的分解秸秆的微生物。研究秸秆分解过程中细菌群落组成的演化规律,对了解和调控农田微生物群体组成以促进秸秆分解具有重要意义。【方法】试验于2014年10月至2015年10月在河南省农业科学院原阳试验基地进行,将成熟期玉米秸秆(茎和叶)烘干,剪成长1~2 cm、宽0.3~1 cm的碎片,称12 g样品(相当于8 t/hm^2)装入15 cm×10 cm的尼龙网包(孔径0.04 mm)内,于10月5日冬小麦出苗后埋置在小麦垄间。分别于埋置后0、1、2、4、7、10和12个月收集秸秆包和土壤样品。测定秸秆样品干物质量和碳氮含量,选择埋置了0、2、4、7和12个月的秸秆及其土壤样品分析细菌丰度及群落组成。【结果】秸秆埋入土壤后的前2个月内分解最快,然后逐步减慢,在1、2、4、7、10和12个月后分别降解了总生物量的19.2%、32.9%、44.2%、52.2%、66.8%和73.8%。秸秆埋入土壤后,秸秆和土壤中细菌丰度均显著增加,分别于第4和7个月达到最高后开始下降。秸秆细菌的丰度指标OTUs、ACE、Chao1和多样性指标Shannon随试验时间的延长逐步增加,而Simpson指数随试验时间延长逐步降低,而土壤中这些指标在试验过程中没有显著变化。与刚埋置秸秆时相比,埋置2个月后的秸秆细菌Bacteroidetes门相对丰度明显增加,主导细菌群为Bacteroidetes和Proteobacteria门。Actinobacteria丰度在埋置2个月后明显降低,然后又随试验时间延长逐步增加。Planctomycetes、Saccharibacteria、Verrucomicrobia、Acidobacteria、Chloroflexi和Gemmatimonadetes丰度在原始秸秆中较低,埋入土壤后随试验时间延长逐步增加。Sphingobacteriia、Gammaproteobacteria、Alphaproteobacteria和Flavobacteriia主导前期细菌纲组成,而Actinobacteria、Anaerolineae和Bacilli纲丰度在后期逐步增加。秸秆分解速率主要受其碳含量影响,秸秆细菌群落组成前期与秸秆碳含量相关,后期与秸秆氮含量相关。随着试验的进展,秸秆细菌群落组成与土壤中的细菌群落组成趋同。【结论】秸秆埋入土壤后前2个月的分解速率最高,随后逐步降低。秸秆分解前期细菌群落由富营养型组分Bacteroidetes和Proteobacteria门和Sphingobacteriia、Gammaproteobacteria、Flavobacteriia和Alphaproteobacteria纲主导,随后被逐步增加的贫营养型组分Actinobacteria、Acidobacteria、Chloroflexi、Saccharibacteria门和Deltaproteobacteria、Actinobacteria纲等代替。秸秆碳氮含量变化是影响秸秆分解及其过程中细菌群落演化的主要原因。  相似文献   
20.
The response of soil microbial communities following changes in land-use is governed by multiple factors. The objectives of this study were to investigate (i) whether soil microbial communities track the changes in aboveground vegetation during succession; and (ii) whether microbial communities return to their native state over time. Two successional gradients with different vegetation were studied at the W. K. Kellogg Biological Station, Michigan. The first gradient comprised a conventionally tilled cropland (CT), mid-succession forest (SF) abandoned from cultivation prior to 1951, and native deciduous forest (DF). The second gradient comprised the CT cropland, early-succession grassland (ES) restored in 1989, and long-term mowed grassland (MG). With succession, the total microbial PLFAs and soil microbial biomass C consistently increased in both gradients. While bacterial rRNA gene diversity remained unchanged, the abundance and composition of many bacterial phyla changed significantly. Moreover, microbial communities in the relatively pristine DF and MG soils were very similar despite major differences in soil properties and vegetation. After >50 years of succession, and despite different vegetation, microbial communities in SF were more similar to those in mature DF than in CT. In contrast, even after 17 years of succession, microbial communities in ES were more similar to CT than endpoint MG despite very different vegetation between CT and ES. This result suggested a lasting impact of cultivation history on the soil microbial community. With conversion of deciduous to conifer forest (CF), there was a significant change in multiple soil properties that correlated with changes in microbial biomass, rRNA gene diversity and community composition. In conclusion, history of land-use was a stronger determinant of the composition of microbial communities than vegetation and soil properties. Further, microbial communities in disturbed soils apparently return to their native state with time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号