首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9565篇
  免费   514篇
  国内免费   901篇
林业   623篇
农学   1681篇
基础科学   243篇
  1318篇
综合类   3679篇
农作物   912篇
水产渔业   208篇
畜牧兽医   843篇
园艺   470篇
植物保护   1003篇
  2024年   63篇
  2023年   185篇
  2022年   377篇
  2021年   349篇
  2020年   420篇
  2019年   465篇
  2018年   373篇
  2017年   528篇
  2016年   502篇
  2015年   446篇
  2014年   553篇
  2013年   685篇
  2012年   716篇
  2011年   681篇
  2010年   571篇
  2009年   502篇
  2008年   487篇
  2007年   496篇
  2006年   364篇
  2005年   339篇
  2004年   249篇
  2003年   205篇
  2002年   158篇
  2001年   133篇
  2000年   128篇
  1999年   160篇
  1998年   119篇
  1997年   100篇
  1996年   87篇
  1995年   71篇
  1994年   87篇
  1993年   75篇
  1992年   81篇
  1991年   57篇
  1990年   42篇
  1989年   35篇
  1988年   21篇
  1987年   19篇
  1986年   12篇
  1985年   6篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   3篇
  1980年   6篇
  1979年   4篇
  1978年   3篇
  1963年   1篇
  1962年   3篇
  1955年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
This study aimed to evaluate the ability of Piriformospora indica to colonize the root of Chenopodium quinoa and to verify whether this endosymbiont can improve the growth, performance and drought resistance of this species. The study delivered, for the first time, evidence for successful colonization of P. indica in quinoa. Hence, pot experiment was conducted in the greenhouse, where inoculated and non‐inoculated plants were subjected to ample (40%–50% WHC) and deficit (15%–20%WHC) irrigation treatments. Drought adversely influenced the plant growth, leading to decline the total plant biomass by 74%. This was linked to an impaired photosynthetic activity (caused by lower gs and Ci/Ca ratio; stomatal limitation of photosynthesis) and a higher risk of ROS production (enhanced ETR/Agross ratio). P. indica colonization improved quinoa plant growth, with total biomass increased by 8% (controls) and 76% (drought‐stressed plants), confirming the growth‐promoting activity of P. indica. Fungal colonization seems to diminish drought‐induced growth hindrance, likely, through an improved water balance, reflected by the higher leaf ψw and gs. Additionally, stomatal limitation of photosynthesis was alleviated (indicated by enhanced Ci/Ca ratio and Anet), so that the threat of oxidative stress was minimized (decreased ETR/Agross). These results infer that symbiosis with P. indica could negate some of the detrimental effects of drought on quinoa growth, a highly desired feature, in particular at low water availability.  相似文献   
32.
The salt‐sensitive Glycine max N23674 cultivar, the salt‐born Glycine soja BB52 population, and their hybrid 4076 strain (F5) selected for salt tolerance generation by generation were used as the experimental materials in this study. First, the effects of NaCl stress on seed germination, tissue damage, and time‐course ionic absorption and transportation were compared. When qualitatively compared with seed germination appearance in culture dishes, and tissue damages on roots or leaves of seedlings, or quantitatively compared with the relative salt injury rate, the inhibition on N23674 was all the most remarkable. After the exposure of 140 mm NaCl for 1 h, 4 h, 8 h, 12 h, 2 days and 4 days, the content of Cl? gradually increased in the roots and leaves of seedlings of BB52, 4076 and 23674. Interestingly, the extents of the Cl? rise in roots of the three experimental soybean materials were BB52 > 4076 > N23674, whereas those in leaves were just on the contrary. Secondly, by using the scanning ion‐selective electrode technique (SIET), fluxes of Na+ and Cl? in roots and protoplasts isolated from roots and leaves were also investigated among the three experimental soybean materials. After 140 mm NaCl stress for 2, 4 and 6 days, and when compared with N23674, slighter net Cl? influxes were observed in root tissue and protoplasts of roots and leaves of BB52 and 4076 seedlings, especially at the cellular protoplast level. The results indicate that with regard to the ionic effect of NaCl stress, Cl? was the main determinant salt ion for salt tolerance in G. soja, G. max and their hybrid, and the difference in their Cl?/salt tolerance is mainly attributed to the capacity of Cl? restriction to the plant above‐ground parts such as leaves.  相似文献   
33.
New Rice for Africa (NERICA) is a general name for interspecific rice varieties derived from a cross between the high‐yielding Asian rice (Oryza sativa L.) between locally adapted African rice (Oryza glaberrima Steud.). Eight NERICAs were evaluated for cold tolerance (CT) at the reproductive stage and compared with their O. sativa parents and three Japanese standard rice varieties over 3 years. Cold tolerance was evaluated based on the filled grain ratio (FGR) after cold water irrigation. The FGR was greatly reduced by cold water irrigation. NERICA 1, 2 and 7 had higher FGR (51.9–57.9 %), while NERICA 6, 15 and 16 had lower FGR (6.2–14.5 %). NERICA 1, 2 and 7 were less affected by cold stress, with a 31 % mean reduction in FGR, while NERICA 6, 15 and 16 were greatly affected, with their FGRs being reduced by more than 80 %. NERICA 3 and 4 were moderately affected by cold stress, with about 45 % reduction rate in FGR. FGR significantly influenced the grain weights of the varieties with strong positive correlations (r = 0.83–0.91; P < 0.001), and thus, similar trends in grain weights were observed. Grain weights were reduced by 61.7–96.4 % under cold stress. NERICA 1, 2 and 7 showed significantly better performance than NERICA 3 and 4, while NERICA 6, 15 and 16 performed poorly under cold water irrigation. The Japanese varieties Koshihikari (very tolerant) and Ozora (moderately tolerant) were more affected by cold water irrigation than NERICA 1, 2 and 7. On the basis of the mean reduction rate (%) in FGR under cold stress, the varieties were classified as follows: NERICA 1, 2 and 7 as tolerant; NERICA 3 and 4 as moderately tolerant; and NERICA 6, 15 and 16 as susceptible to cold stress. However, NERICA 7 grain yields were lower under cold stress due to both greatly reduced number of panicles per plant and number of spikelets per panicle. Therefore, NERICA 1 and 2 are suitable candidates for production in the highland regions of East Africa and should be promoted for production.  相似文献   
34.
以宁夏枸杞(Lycium barbarum)中的两个品种扁果枸杞和宁杞0702为材料,对比二者在渗透胁迫、盐处理以及渗透胁迫和盐处理互作条件下的生长特征、叶组织含水量以及各器官Na~+、K~+积累量分析。结果表明,与对照相比,-0.5 MPa渗透胁迫下,扁果枸杞和宁杞0702的生长均受到抑制,其鲜重分别降低了34%和38%,根长分别降低了32%和17%;与对照相比,50mmol·L~(-1) NaCl使扁果枸杞幼苗的鲜重显著增加了38%(P0.05),干重、株高和根长均不受影响,但宁杞0702幼苗鲜重、干重、株高和根长分别显著降低了27%、34%、44%和14%(P0.05);渗透胁迫~+盐处理下,扁果枸杞幼苗与对照组差异不显著(P0.05),而宁杞0702幼苗的鲜重、干重、株高和根长分别显著降低了37%、28%、44%和13%。与对照相比,渗透胁迫下,扁果枸杞叶组织含水量维持稳定,而宁杞0702显著降低了12%(P0.05);在盐处理下,扁果枸杞和宁杞0702叶组织含水量分别显著增加了25%和18%(P0.05),在渗透胁迫~+盐处理下二者均维持稳定。在扁果枸杞中,鲜重和叶组织含水量与叶、茎中Na~+浓度呈极显著正相关(P0.01),而在宁杞0702中,鲜重仅与叶中的K~+浓度极显著正相关(P0.01),与茎中的Na~+则呈显著负相关(P0.05),叶组织含水量则与各器官中的Na~+、K~+浓度均不相关。与对照相比,扁果枸杞在渗透胁迫和盐处理下ST值分别显著增加了84%和43%(P0.05),而宁杞0702则分别显著降低了63%和47%(P0.05)。上述结果表明,扁果枸杞能通过体内积累适量的Na~+,调控体内Na~+、K~+平衡,改善体内的水分状况,维持其正常的生长,具有盐生植物的特点;宁杞0702则不具备这些特征。  相似文献   
35.
Sorghum [Sorghum bicolor (L.) Moench] is a drought‐tolerant crop, and its productivity in rain fed environments has increased since the 1950s. This increase is due to changes in agronomic practices and hybrid improvement. The objective of this study was to determine what aspects of grain sorghum morphology, physiology and water use have changed with hybrid improvement and might have contributed to this yield increase. A 2‐year greenhouse experiment was conducted with one hybrid from each of the past five decades. The hybrids were studied in well‐watered and pre‐ and post‐flowering water deficit conditions. Total water use, transpiration, stomatal conductance and photosynthesis were measured during the growing period. Biomass and biomass components were measured at harvest. There was no consistent change in the leaf physiological parameters resulting from hybrid advancement. In contrast, total water use increased in rate of 8.5 cm3 kg soil?1 year?1 from old to new hybrids in the well‐watered treatments. Root biomass also increased in rate of 0.2 g plant?1 year?1. Leaf biomass and panicle length also was greater for the newest compared with the older hybrids. Hybrid advancement was related to increase in panicle length but decrease in peduncle length. Results indicated that hybrid development programmes created hybrids with improved drought avoidance, due to better root density of newly released hybrids, or hybrids with better resource use which ultimately increased yield under rain fed conditions.  相似文献   
36.
Soybean has been considered a cold intolerant species; based largely upon seed germination and soil emergent evaluations. This study reports a distinct acquisition of cold tolerance, in seedlings, following short acclimation periods. Diversity in cold responses was assessed in eight cultivars of Glycine max and six accessions of G. soja. All varieties of soybean significantly increased in freezing tolerance following acclimation. This study indicates soybean seedlings are indeed capable of sensing cold and acquiring cold tolerance. Germination rates after cold imbibition were negatively correlated with maturity group, but positively correlated with cold acclimation potential in G. soja. Seed fatty acid composition was varied between the species, with Glycine soja accessions containing about 2‐times more linolenic acid (18:3) than G. max. Furthermore, high levels of linoleic acid (18:2) in seeds were positively correlated with germination rates following cold imbibition in G. soja only. We suggest that domestication has not impacted the overall ability of soybean to cold acclimate at the seedling stage and that there is little variation within the domesticated species for ability to cold acclimate. Thus, this brief comparative study reduces the enthusiasm for the “wild” species as an additional source of genetic diversity for cold tolerance.  相似文献   
37.
本文介绍了干旱对植物伤害及表现,根据国内外相关文献资料对叶绿素荧光法和电阻抗图谱法两种测定植物抗旱性方法进行概述。  相似文献   
38.
In order to study the tolerance dose of Kunming mice to montmorillonite as a mycotoxin adsorbent in diets,the experiment selected 60 healthy male Kunming mice with initial average body weight of (17±0.12)g,randomly divided them into 5 treatments with two replicates per group and 6 mice per replicate.Five experimental diets were added to 0 (control group),0.5%,1%,2% and 5% montmorillonite,respectively.After 30 days,the growth performance,nutrients apparent digestibility,serum biochemical indices and internal organization were tested to determine the tolerance dose of montmorillonite for Kunming mice.The results showed that the ADFI was significantly increased in 0.5% group (P< 0.05),while there were no significant differences in ADFI and ADG between 1% group and control group (P> 0.05),then the ADFI was significantly decreased with the increasing of montmorillonite supplemental level (P< 0.05).The ADG in 2% group had no significant difference when compared with the control group (P> 0.05),while significantly lower than that in 0.5% and 1% groups (P< 0.05).The apparent digestibility of DM,CP and EE showed no significant effect at any level of montmorillonite (P> 0.05).Serum ALT,AST activities and MDA content were gradually increased with the montmorillonite supplemental level increasing,and that in 1%,2% and 5% groups were significantly higher than that in control group (P< 0.05),but there were no significant differences between 0.5% group and control group (P> 0.05).Tissue sections showed that mice livers were damaged in varying degrees when the montmorillonite supplemental level was 5%.In conclusion,based on a comprehensive consideration of all indexes,it could be seen that the tolerance dose of the tested montmorillonite for Kunming mice was between 0.5% and 2% when mycotoxin contents in diets were in security range.  相似文献   
39.
Plants are often subjected to periods of water stress. There are little data examining the effect of water stress on the forage species Plantago lanceolata and Cichorium intybus. In two pot experiments with P. lanceolata and C. intybus, morphological responses under optimum, dry, and very‐dry water treatments with weekly, fortnightly and 3‐weekly defoliation intervals and physiological responses under optimum and very‐dry water treatments were measured. A third experiment compared the rooting depths of P. lanceolata and C. intybus under field conditions. These findings suggest that both P. lanceolata and C. intybus can survive and continue to grow under water stress conditions with the main differences between the two species being attributable to morphological characteristics (root mass, taproot diameter and shoot mass fraction) rather than differences at a physiological level. Overall, the results suggest plantain may be more productive under moderate drought due to its greater shoot mass fraction, whereas chicory may be more productive and persistent under severe drought due to its greater root mass, taproot diameter and root depth under field conditions.  相似文献   
40.
The present investigation was conducted to assess the ameliorative effects of foliar‐applied trehalose on growth, photosynthetic attributes, water relation parameters and oxidative defence mechanism in two maize cultivars under field water deficit conditions. Various components of the experiment comprised two maize cultivars (EV‐1098 and Agaiti‐2002), two water‐stress levels (irrigation after 2 weeks and irrigation after 3 weeks during the entire period of growth), and two levels of trehalose (0 and 30 mm ) and four replicates of each treatment. Water stress significantly reduced the plant biomass production, photosynthetic attributes and water relation parameters in both maize cultivars. In contrast, water stress considerably increased the leaf malondialdehyde (MDA) contents, the activities of antioxidant enzymes such as peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT), and the levels of non‐enzymatic compounds such as ascorbic acid and tocopherols. In contrast, water stress caused a marked reduction in leaf phenolic contents. Foliar‐applied trehalose significantly increased plant biomass production, and improved some key photosynthetic attributes and plant–water relation parameters. The ameliorative effect of exogenously applied trehalose was also observed on the activities of some key antioxidant enzymes (POD and CAT) and non‐enzymatic compounds (tocopherols and phenolics). Overall, exogenously applied trehalose considerably improved drought tolerance of maize plants by up‐regulating photosynthetic and water relation attributes as well as antioxidant defence mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号