首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   8篇
  国内免费   4篇
农学   11篇
  38篇
综合类   16篇
农作物   8篇
畜牧兽医   1篇
  2024年   1篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   2篇
  2019年   15篇
  2018年   7篇
  2017年   7篇
  2016年   4篇
  2015年   2篇
  2014年   4篇
  2013年   11篇
  2012年   5篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2007年   1篇
  2006年   2篇
排序方式: 共有74条查询结果,搜索用时 0 毫秒
51.
为了分析锌强化对不同小麦品种籽粒矿质元素含量的影响,以40个不同小麦品种(系)为材料,在扬花期叶面喷施0.5%的Zn肥,用原子吸收光谱法测定Zn处理与不处理(对照)下不同小麦品种籽粒中6种矿质元素(Zn、Fe、Ca、Mg、Cu、Mn)的含量,并分析这些元素对Zn强化的响应。结果表明,Zn处理后各品种籽粒中Zn含量均比对照有极显著上升,但上升幅度因品种而异。籽粒中Fe、Ca、Mg、Cu、Mn含量对Zn强化的响应因元素种类和品种而异,就品种平均值而言,Mn含量在Zn处理和对照间有极显著差异,Fe、Mg和Cu含量在处理与对照间无显著差异。大部分品种Zn处理后籽粒Ca含量有所下降,Mn则有所增加。对施Zn和对照间被测矿质元素的变幅进行主成分分析,前三个主成分(PC1、PC2、PC3)累积贡献率为0.76,基于前三个主成分对40个品种(系)进行类平均法的聚类分析,将40个品种分为3类:第1类包含有8个品种,Zn处理后籽粒中Ca、Mg、Cu、Fe含量总体呈现降低趋势,而Mn、Zn含量呈增高趋势;第2类包含23个品种,Zn处理后籽粒Ca、Cu含量总体有一定的降低,其余4种元素含量则有一定幅度的提高;第3类共有9个品种,施Zn后Fe含量总体有一定幅度的降低,其余5种元素含量则有一定幅度的增加。来自第2类和第3类中的12个品种在Zn处理后所测定的全部6种元素或者其中大部分元素的含量提高,适宜进行Zn强化,而其余品种Zn强化后部分或全部元素(Zn除外)与对照相比有所下降,不宜作为Zn营养强化的载体品种。  相似文献   
52.
ABSTRACT

Biofortification experiments with three winter wheat cultivars treated with sodium selenate through foliar- and soil-fertilisation were conducted at two locations in Croatia and Serbia in two consecutive years to increase the selenium (Se) concentration in bread-making wheat grain. The treatments were: (a) 5?g?ha?1 Se foliar-, (b) 10?g?ha?1 Se foliar- and (c) 10?g?ha?1 Se in soil surface-application and they were compared with (d) control. Both Se foliar- and soil-fertilisation increased the Se concentration in grains from 2.6- to 4.6-fold. The concentration in grain was highest with Se foliar-fertilisation of 10?g?ha?1 and it was increased by 29–32?µg Se kg?1 dry weight for each gram of Se applied per ha. The wheat cultivars differed in grain yield and Se uptake (g?ha?1 Se). However, on average, there were no differences between wheat cultivars with respect to Se grain concentrations. Agronomic use efficiency (by grain) was significantly higher for Se foliar- (19%) than for soil-fertilisation (13%). It can be concluded that agronomic biofortification of winter wheat can be effective in increasing Se grain concentration, where the efficiency depends on the rate of Se applied, application method and local environmental conditions rather than on cultivar differences.  相似文献   
53.
Mineral malnutrition affects billions of people all over the world and biofortification of staple crops provides a potential way to alleviate dietary mineral deficiencies. For example, nutritional quality is an important breeding target for fresh waxy maize(Zea mays L.), which is widely consumed in Asian countries. Successful improvement of mineral composition will require comprehensive profiling of the mineral composition of maize varieties and an understanding of the capacity for maize grains to accumulate minerals. Here, using inductively coupled plasma absorption emission spectrometry, we quantified 12 minerals from the seeds of 47 maize varieties, including 25 Korean landraces. We also compared the mineral contents in varieties with different seed starch profiles: waxy maize(which contains 100% amylopectin), dent maize(roughly 75% amylopectin and 25% amylose), and flint maize(similar to dent maize). The amounts of potassium, phosphorus, and sulfur were correlated with seed texture, waxy maize having higher amounts of phosphorus and potassium than dent maize and lower amounts of sulfur than flint maize or dent maize. In addition, a positive relationship was detected between the amount of phosphorus and that of potassium, magnesium, and manganese. These results provide information on maize seed mineral composition and indicate that it could be affected by starch composition. Furthermore, the landraces that exhibit high mineral contents could be used as germplasm materials for breeding programs aimed at producing biofortified maize cultivars.  相似文献   
54.
Iron (Fe) toxicity is one of the major mineral disorders affecting rice (Oryza sativa L.) production in Madagascar. This study aimed at linking physiological and agronomic responses of diverse rice genotypes to Fe resistance mechanisms with different nutrient management practices. Twenty‐three local and exotic rice varieties were grown in Fe‐toxic soil in parallel greenhouse and field experiments and subjected to two treatments: (1) no fertilizer; (2) mineral and organic fertilizer application at recommended rates. Growth, straw and grain yield, symptom formation, and physiological responses including Fe uptake, root plaque formation, and lipid peroxidation were monitored. The application of fertilizer significantly decreased average shoot Fe concentrations partly due to Fe exclusion favored by enhanced root plaque formation. Visual symptoms negatively correlated with straw biomass in both experiments and grain yield in the greenhouse experiment, and positively correlated with lipid peroxidation. However, no plausible correlation occurred with grain yield in the field due to sterility in exotic varieties un‐adapted to local climate. Even though grain Fe concentrations were orders of magnitude lower than in vegetative tissue, some exotic varieties were significantly superior to local checks. Our results provide insight into management and genotype options for adapting rice to Fe toxicity under field conditions.  相似文献   
55.
Iodine biofortification of butterhead lettuce (Lactuca sativa) via foliar sprays was investigated in field trials, focusing on assessing the influence of the time and application method. The iodine (I) concentrations in the edible plant parts increased when potassium iodide (KI) and potassium iodate (KIO3) solutions were sprayed at doses up to 0.25 kg I ha?1 on different dates close to harvest. Crop yield and marketable quality were not significantly affected by I treatments. A greater efficacy of KI was frequently observed and probably related to its lower point of deliquescence and smaller anion size in comparison with KIO3. KI sprays on butterhead lettuce at different times of the day resulted in a higher I enrichment when applied at 11:00 and 15:00 h. The diurnal variation in I uptake may reflect the impact of fluctuating climatic conditions at the time of application. Iodine treatments at different application dates near harvest led to an increasing I concentration in the vegetable produce that could be related to the rising shoot fresh mass and leaf area. When KI and KIO3 were sprayed simultaneously with commercial calcium fertilizers, fungicides or insecticides, I accumulation in butterhead lettuce was not negatively affected or in some cases even significantly enhanced. The results show that foliar sprays of KI and KIO3 are an effective method to biofortify butterhead lettuce with I and this approach may easily be implemented as a routine method in commercial cultivation.  相似文献   
56.
增加谷粒特别是人类食用部位胚乳中的锌浓度是当前生物强化领域一个挑战。2011年在土培条件下,以扬麦16号和扬辐麦2号两个当地高产品种为供试材料,于花后每隔1周喷施0.2%或0.4% ZnSO4 3次,以喷等量清水为对照,研究结实期叶面喷施锌肥对小麦籽粒不同部位锌含量的影响。结果表明,与对照相比,0.2%、0.4% ZnSO4处理使供试品种籽粒中的锌浓度平均分别增加58%和125%,达极显著水平。利用磨粉机Sedimat Laboratory Mill将小麦籽粒分为麸皮、次粉和面粉3个组分,测定数据表明,锌浓度为麸皮>次粉>面粉,最高和最低浓度相差约8倍。两品种平均,0.2% ZnSO4处理使小麦麸皮、次粉和面粉中锌浓度分别增加64%、54%和37%,0.4% ZnSO4处理使对应部位锌浓度分别增加117%、110%和92%,均达显著或极显著水平。结实期叶面施锌对籽粒各部位锌累积量的影响与锌浓度的响应趋势一致。与此不同,结实期叶面施锌对麸皮、次粉和面粉锌积累量占籽粒总锌积累量的比例没有影响。多数情况下,结实期锌处理对扬麦16号籽粒各部位锌浓度和锌累积量的影响大于扬辐麦2号。以上数据表明,通过选择适宜品种结合叶面施锌,可以经济有效地改善现代小麦品种面粉的锌营养水平。  相似文献   
57.
Background and Aims : Agronomic biofortification of food crops with iodine may improve the dietary intake of this trace element, which is essential for human development and health. So far, little is known about the suitability of this technique in pome fruits. The objectives of this study were (1) to investigate uptake and translocation of exogenously applied iodine in apple trees, (2) to identify possible strategies of iodine biofortification for this type of fruit, and (3) to evaluate interactions between foliar applied iodine and selenium. Methods : Apple trees were cultivated in a plastic tunnel for two growing seasons. Iodine was applied via leaves or substrate. During the 2nd year, simultaneous foliar application of iodine and selenium were tested as well. At harvest time, iodine and selenium content in leaves and fruits were determined. The phytoavailable iodine concentration in the growing medium was analyzed following an extraction with calcium chloride. In addition, the dynamics of iodine applied as potassium iodide and iodate in a peat‐based substrate was investigated in an incubation experiment without plants. Results : The iodine concentration in washed apples increased more than 100‐fold, valuing around 50 µg (100 g FM)?1 by foliar application of iodine as compared to the control treatment. However, this level was only achieved in fruits which were directly wetted by the spray solution. The translocation of leaf‐absorbed iodine to fruits was negligible. Following a substrate fertilization, the fruit iodine content remained rather low due to a strong retention of iodine in the growing medium. When using foliar sprays, the addition of selenium did not affect the iodine enrichment of the apple fruits. Conclusions : Foliar fertilization of iodine seems to be a promising method to biofortify apples with iodine. The level of I achieved in apple fruits by means of foliar fertilization can significantly contribute to the daily I intake requirement of humans.  相似文献   
58.
A large number of spelt wheat genotypes (ranging from 373 to 772) were evaluated for grain concentrations of protein and mineral nutrients under 6 different environments. There was a substantial genotypic variation for the concentration of mineral nutrients in grain and also for the total amount of nutrients per grain (e.g., content). Zinc (Zn) showed the largest genotypic variation both in concentration (ranging from 19 to 145 mg kg−1) and content (ranging from 0.4 to 4.1 μg per grain). The environment effect was the most important source of variation for grain protein concentration (GPC) and for many mineral nutrients, explaining between 37 and 69% of the total sums of squares. Genotype by environment (G × E) interaction accounted for between 17 and 58% of the total variation across the minerals. GPC and sulfur correlated very significantly with iron (Fe) and Zn. Various spelt genotypes have been identified containing very high grain concentrations of Zn (up to 70 mg kg−1), Fe (up to 60 mg kg−1) and protein (up to 30%) and showing high stability across various environments. The results indicated that spelt is a highly promising source of genetic diversity for grain protein and mineral nutrients, particularly for Zn and Fe.  相似文献   
59.
A very small amount of applied zinc (Zn) is taken up by crops, resulting in low recovery by plants. Adding elemental sulphur to zinc oxide (ZnO) fertiliser could improve Zn solubilisation and exert a higher residual effect on crops than soluble Zn sources. We produced an isotopically labelled Zn-elemental sulphur fertiliser and evaluated its performance in comparison to traditional Zn sources during sequential crop cultivation. Three 67Zn-labelled fertilisers, ZnO, zinc sulphate (ZnSO4), and ZnO co-granulated with elemental sulphur (ZnOS0), were soil applied, and their contributions to the uptake of Zn by three consecutive crops, wheat, ryegrass, and corn, were assessed in a 294-d pot experiment. The contributions of Zn fertilisers followed the order:ZnSO4 > ZnO=ZnOS0. The relative contributions of Zn fertilisers were lower in the first crop than in the subsequent crops. The overall recovery of applied Zn by the three crops was higher for ZnSO4 than for ZnO and ZnOS0, reaching 1.56%, 0.45%, and 0.33% of the applied Zn, respectively. Zinc recovery by plants was very low, regardless of the source of Zn. Adding elemental sulphur to ZnO did not increase its effectiveness up to 294 d after application. Fertiliser contribution was higher for the subsequent crops than for the initial crop, indicating the importance of assessing the residual effects of Zn fertilisers.  相似文献   
60.
ABSTRACT

Zinc (Zn) and iron (Fe) deficiency-related health problems in humans may be solved by improving their concentration in edible grains. The study, conducted in 2015–16 and 2016–17, investigated the effects of soil and foliar application of Zn and foliar application of urea on grain Zn and Fe accumulation of chickpea grains. Soil application of ZnSO4 @ 25 kg ha?1 + foliar spray of ZnSO4 @ 0.5% at flowering and pod formation stages resulted in the highest Zn (45.06 & 44.69 mg Zn kg?1 grain in the first and second year of study) and Fe (59.74 & 62.88 mg Fe kg?1 grain) content. Urea application @ 2% at flowering and pod formation stages also resulted in the highest grain Zn (41.12 & 40.26 mg Zn kg?1 grain) and Fe (58.95 & 61.95 mg Fe kg?1 grain) content. Grain yield and protein content were significantly increased over control with these treatments. As compared to the sole application of Zn, the combined use of Zn and urea improved the grain Zn and Fe contents. Zinc and urea can be applied to improve Zn and Fe content in chickpea grains and, therefore, can help in ameliorating malnutrition in burgeoning human population.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号