首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43916篇
  免费   2917篇
  国内免费   3426篇
林业   2901篇
农学   2213篇
基础科学   2283篇
  21911篇
综合类   14832篇
农作物   1073篇
水产渔业   32篇
畜牧兽医   1416篇
园艺   507篇
植物保护   3091篇
  2024年   359篇
  2023年   1188篇
  2022年   1573篇
  2021年   1608篇
  2020年   1670篇
  2019年   1887篇
  2018年   1552篇
  2017年   2348篇
  2016年   2761篇
  2015年   1893篇
  2014年   2109篇
  2013年   3066篇
  2012年   3905篇
  2011年   2868篇
  2010年   2230篇
  2009年   2319篇
  2008年   2075篇
  2007年   2267篇
  2006年   1966篇
  2005年   1656篇
  2004年   1285篇
  2003年   1113篇
  2002年   879篇
  2001年   844篇
  2000年   722篇
  1999年   534篇
  1998年   467篇
  1997年   482篇
  1996年   408篇
  1995年   436篇
  1994年   404篇
  1993年   305篇
  1992年   254篇
  1991年   251篇
  1990年   173篇
  1989年   153篇
  1988年   94篇
  1987年   75篇
  1986年   40篇
  1985年   13篇
  1984年   6篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   4篇
  1977年   1篇
  1976年   1篇
  1963年   1篇
  1962年   5篇
  1955年   1篇
排序方式: 共有10000条查询结果,搜索用时 343 毫秒
151.
Most of the soils of tropical countries are affected by erosion processes. As a result, much attention has been dedicated to the use of microorganisms to improve the geotechnical properties and stability of soils in the context of “bioengineering”. This work was carried out to analyze the effects of the use of a CaCO3 precipitating nutrient on native microbiota with the aim of mitigating the erosion processes in a tropical soil profile. We observed that the use of nutrient B4 enabled native bacteria present in the soil to precipitate calcium carbonate, resulting in improvements in the physical, chemical, mineralogical and mechanical properties of the soil, which allowed the mitigation of the erosion processes that characterize the soil profile studied.  相似文献   
152.
Addition of organic matter (OM) to flooded soils stimulates reductive dissolution of Fe(III) minerals, thereby mobilizing associated phosphate (P). Hence, OM management has the potential to overcome P deficiency. This study assessed if OM applications increases soil or mineral fertilizer P availability to rice under anaerobic (flooded) condition and if that effect is different relative to that in aerobic (nonflooded) soils. Rice was grown in P‐deficient soil treated with combinations of addition of mineral P (0, 26 mg P/kg), OM (0, ~9 g OM/kg as rice straw + cattle manure) and water treatments (flooded vs nonflooded) in a factorial pot experiment. The OM was either freshly added just before flooding or incubated moist in soil for 6 months prior to flooding; blanket N and K was added in all treatments. Fresh addition of OM promoted reductive dissolution of Fe(III) minerals in flooded soils, whereas no such effect was found when OM had been incubated for 6 months before flooding. Yield and shoot P uptake largely increased with mineral P addition in all soils, whereas OM addition increased yield and P uptake only in flooded soils following fresh OM addition. The combination of mineral P and OM gave the largest yield and P uptake. Addition of OM just prior to soil flooding increased P uptake but was insufficient to overcome P deficiency in the absence of mineral P. Larger applications of OM are unlikely to be more successful in flooded soils due to side effects, such as Fe toxicity.  相似文献   
153.
席颖  贾国梅  王旭  何立 《湖北农业科学》2016,(16):4113-4116
不同植被类型影响着土壤养分的积累、分布与循环,而土壤氮素是植被生长的重要限制性元素。通过分析宜昌点军区3种植被类型(柏树地、橘树地、菜地)覆盖下土壤氮素的变化情况,研究了不同植被对土壤氮素各形态的影响。结果表明,土壤全氮、硝态氮和微生物氮都是柏树地显著大于菜地和橘树地,而菜地和橘树地之间无显著性的差异;土壤矿化氮和微生物氮/全氮的变化顺序是柏树地橘树地菜地。说明不同植被覆盖对土壤氮有显著的影响,柏树地更有利于土壤氮的积累,氮的有效性也最高,由此认为柏树长期生长有益于土壤氮的改善。  相似文献   
154.
Soil compaction impacts growing conditions for plants: it increases the mechanical resistance to root growth and modifies the soil pore system and consequently the supply of water and oxygen to the roots. The least limiting water range (LLWR) defines a range of soil water contents within which root growth is minimally limited with regard to water supply, aeration and penetration resistance. The LLWR is a function of soil bulk density (BD), and hence directly affected by soil compaction. In this paper, we present a new model, ‘SoilFlex‐LLWR’, which combines a soil compaction model with the LLWR concept. We simulated the changes in LLWR due to wheeling with a self‐propelled forage harvester on a Swiss clay loam soil (Gleyic Cambisol) using the new SoilFlex‐LLWR model, and compared measurements of the LLWR components as a function of BD with model estimations. SoilFlex‐LLWR allows for predictions of changes in LLWR due to compaction caused by agricultural field traffic and therefore provides a quantitative link between impact of soil loading and soil physical conditions for root growth.  相似文献   
155.
Biochar addition can expand soil organic carbon (SOC) stock and has potential ability in mitigating climate change. Also, some incubation experiments have shown that biochar can increase soil inorganic carbon (SIC) contents. However, there is no direct evidence for this from the field experiment. In order to make up the sparseness of available data resulting from the long‐term effect of biochar amendment on soil carbon fractions, here we detected the contents and stocks of the bulk SIC and SOC fractions based on a 10‐year field experiment of consecutive biochar application in Shandong Province, China. There are three biochar treatments as no‐biochar (control), and biochar application at 4.5 Mg ha?1 year?1 (B4.5) and 9.0 Mg ha?1 year?1 (B9.0), respectively. The results showed that biochar application significantly enhanced SIC content (3.2%–24.3%), >53 μm particulate organic carbon content (POC, 38.2%–166.2%) and total soil organic carbon content (15.8%–82.2%), compared with the no‐biochar control. However, <53 μm silt–clay‐associated organic carbon (SCOC) content was significantly decreased (14%–27%) under the B9.0 treatment. Our study provides the direct field evidence that SIC contributed to carbon sequestration after the biochar application, and indicates that the applied biochar was allocated mainly in POC fraction. Further, the decreased SCOC and increased microbial biomass carbon contents observed in field suggest that the biochar application might exert a positive priming effect on native soil organic carbon.  相似文献   
156.
我国水土保持监测制度体系建设现状与任务   总被引:4,自引:0,他引:4       下载免费PDF全文
建立和健全监测制度,是水土保持监测工作的主要内容和重要保障,对规范水土保持监测行为、实现水土保持监测全过程管理的制度化和科学化具有十分重要的意义。经过20年的努力,已初步建立了由法律法规、规范性文件和技术标准构成的水土保持监测制度体系。其中,法律法规主要包括《中华人民共和国水土保持法》及其实施条例、部门规章和地方性法规等,规范性文件主要包括综合管理、监测网络和信息系统建设与管理、动态监测管理、水土流失灾害事件调查管理、监测数据管理等5类管理制度,技术标准体系中包括已颁布的15项和正在制订与拟编的15项技术规程或规范。  相似文献   
157.
Common bean (Phaseolus vulgaris L.) is the most important food legume, cultivated by small farmers and is usually exposed to unfavorable conditions with minimum use of inputs. Drought and low soil fertility, especially phosphorus and nitrogen (N) deficiencies, are major limitations to bean yield in smallholder systems. Beans can derive part of their required N from the atmosphere through symbiotic nitrogen fixation (SNF). Drought stress severely limits SNF ability of plants. The main objectives of this study were to: (i) test and validate the use of 15N natural abundance in grain to quantify phenotypic differences in SNF ability for its implementation in breeding programs of common bean with bush growth habit aiming to improve SNF, and (ii) quantify phenotypic differences in SNF under drought to identify superior genotypes that could serve as parents. Field studies were conducted at CIAT-Palmira, Colombia using a set of 36 bean genotypes belonging to the Middle American gene pool for evaluation in two seasons with two levels of water supply (irrigated and drought stress). We used 15N natural abundance method to compare SNF ability estimated from shoot tissue sampled at mid-pod filling growth stage vs. grain tissue sampled at harvest. Our results showed positive and significant correlation between nitrogen derived from the atmosphere (%Ndfa) estimated using shoot tissue at mid-pod filling and %Ndfa estimated using grain tissue at harvest. Both methods showed phenotypic variability in SNF ability under both drought and irrigated conditions and a significant reduction in SNF ability was observed under drought stress. We suggest that the method of estimating Ndfa using grain tissue (Ndfa-G) could be applied in bean breeding programs to improve SNF ability. Using this method of Ndfa-G, we identified four bean lines (RCB 593, SEA 15, NCB 226 and BFS 29) that combine greater SNF ability with greater grain yield under drought stress and these could serve as potential parents to further improve SNF ability of common bean.  相似文献   
158.
红壤旱地芝麻防早衰叶面调控剂筛选研究   总被引:2,自引:0,他引:2  
研究结果表明,速效肥料、生长调节剂及抗病药剂对保持芝麻生长中后期的正常生长都能起到积极作用。"磷酸二氢钾+硝酸铵+腐植酸+赤霉素"配制能有效防控红壤旱地芝麻早衰,在此配方基础上,添加代森锰锌能对防控芝麻叶部及茎部病害起到一定的作用,从而增强了红壤旱地上芝麻的抗早衰能力。  相似文献   
159.
Emissions of N2O were measured following addition of 15N‐labelled residues of tropical plant species [Vigna unguiculata (cowpea), Mucuna pruriens and Leucaena leucocephala] to a Ferric Luvisol from Ghana at a rate of 100 mg N/kg soil under controlled environment conditions. Residues were also applied in different ratio combinations with inorganic N fertilizer, at a total rate of 100 mg N/kg soil. N2O emissions were increased after addition of residues, and further increased with combined (ratio) applications of residues and inorganic N fertilizer. However, 15N‐N2O production was low and short‐lived in all treatments, suggesting that most of the measured N2O‐N was derived from the applied fertilizer or native soil mineral N pools. There was no consistent trend in magnitude of emissions with increasing proportion of inorganic fertilizer in the application. The positive interactive effect between residue‐ and fertilizer‐N sources was most pronounced in the 25:75 Leucaena:fertilizer and cowpea:fertilizer treatments where 1082 and 1130 mg N2O‐N/g residue were emitted over 30 days. N2O (loge) emission from all residue amended treatments was positively correlated with the residue C:N ratio, and negatively correlated with residue polyphenol content, polyphenol:N ratio and (lignin + polyphenol):N ratio, indicating the role of residue chemical composition in regulating emissions even when combined with inorganic fertilizer. The positive interactive effect in our treatments suggests that it is unlikely that combined applications of residues and inorganic fertilizer can lower N2O emissions unless the residue is of very low quality promoting strong immobilisation of soil mineral N.  相似文献   
160.
The Less Favoured Area (LFA) scheme is a major element of the EU Rural Development Policy, aimed at supporting farming in areas with natural handicaps or low soil productivity. It has been in place since 1975 and accounts for 14% of total Community funding. In 2003, the European Court of Auditors recommended that the socio‐economic criteria on which the current scheme is based be replaced by biophysical criteria. Reviews of the proposals suggest that in Atlantic climates of Northwest Europe, the new criteria do not delineate adequately areas where agricultural productivity is constrained by the biophysical environment and that such areas are instead demarcated by the occurrence of excess soil moisture conditions. In this paper, we review the impact of excess soil moisture conditions on the sustainability of farming systems and their role in constraining strategic and tactical farm management practices. In particular, we review the scientific evidence on the impact of excess soil moisture conditions on herbage growth, herbage utilization, farm operations and environmental sustainability. On the basis of this, we propose an additional biophysical criterion for the new delineation of LFAs, namely the length of time that soil water is in excess of field capacity (‘field capacity days’). While there is no clear threshold for field capacity days above which agricultural sustainability is acutely constrained, the evidence reviewed in this paper suggests that the sustainability of intensive livestock farming and tillage systems is particularly challenging in scenarios where the 80 percentile of field capacity days exceeds 220–230 days.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号