首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8307篇
  免费   389篇
  国内免费   1047篇
林业   354篇
农学   894篇
基础科学   253篇
  3035篇
综合类   3090篇
农作物   903篇
水产渔业   209篇
畜牧兽医   488篇
园艺   231篇
植物保护   286篇
  2024年   59篇
  2023年   185篇
  2022年   297篇
  2021年   349篇
  2020年   328篇
  2019年   374篇
  2018年   331篇
  2017年   508篇
  2016年   510篇
  2015年   401篇
  2014年   398篇
  2013年   670篇
  2012年   612篇
  2011年   591篇
  2010年   462篇
  2009年   444篇
  2008年   417篇
  2007年   443篇
  2006年   417篇
  2005年   298篇
  2004年   239篇
  2003年   211篇
  2002年   136篇
  2001年   112篇
  2000年   131篇
  1999年   101篇
  1998年   86篇
  1997年   83篇
  1996年   85篇
  1995年   68篇
  1994年   58篇
  1993年   61篇
  1992年   62篇
  1991年   60篇
  1990年   26篇
  1989年   40篇
  1988年   31篇
  1987年   29篇
  1986年   8篇
  1985年   8篇
  1984年   1篇
  1983年   2篇
  1981年   2篇
  1979年   1篇
  1977年   3篇
  1963年   1篇
  1962年   2篇
  1956年   1篇
  1955年   1篇
排序方式: 共有9743条查询结果,搜索用时 15 毫秒
981.
人工油松林系统水土保持功能的叠加效应   总被引:4,自引:2,他引:4  
用理论分析和典型观测的方法研究了人工油松林系统水土保持功能的叠加效应。结果表明 :与荒坡灌草小流域相比 ,人工油松林系统减小净雨作用明显 ;对两次次降水而言 ,人工油松林系统对径流时间的滞后效应各为荒坡灌草的 2 .5倍和 4 .3倍 ;对径流动能的减小效应分别为 2 5 .0倍和 166.4倍 ;对挟沙能力的减小效应分别为 2 4 .4倍和 163 .3倍。人工油松林系统能改良土壤 ,使其抗冲、抗蚀性能提高 ,此种双向作用使人工油松林发挥了良好的水土保持作用。  相似文献   
982.
沼气生态工程的土壤改良效应分析   总被引:3,自引:0,他引:3       下载免费PDF全文
针对红壤丘陵岗地开发利用中存在的重用轻养现象,以江西省上高南方果园科研示范基地为例,从系统分析的角度,统计分析了在红壤丘陵岗地开发利用中通过建立循环经济系统,实施沼气生态工程建设对提高土壤有机质含量的效应。研究表明,通过绿肥套种可以明显提高土壤有机质;而开展沼气工程,施用沼肥对果园土壤有机质含量的提高,具有十分显著的促进作用,可以在相对较短的时间,较大程度地提高土壤有机质含量。  相似文献   
983.
The long-term (9 years) effect of pig slurry applications vs mineral fertilization on denitrifying activity, N2O production and soil organic carbon (C) (extractable C, microbial biomass C and total organic C) was compared at three soil depths of adjacent plots. The denitrifying activities were measured on undisturbed soil cores and on sieved soil samples with acetylene method to estimate denitrification rates under field or potential conditions. Pig slurry applications had a moderate impact on the C pools. Total organic C was increased by +6.5% and microbial biomass C by ≥25%. The potential denitrifying activity on soil suspension was stimulated (×1.8, P<0.05) 12 days after the last slurry application. This stimulation was still apparent, but not significant, 10 months later and, according to both methods of denitrifying activity measurement (r 2=0.916, P<0.01 on sieved soil; r 2=0.845, P<0.001 on soil cores), was associated with an increase in microbial biomass C above a threshold of about 105 mg kg−1. The effect of pig slurry on denitrification and N2O reduction rates was detected on the surface layer (0–20 cm) only. However, no pig slurry effect could be detected on soil cores at field conditions or after NO3 enrichments at 20°C. Although the potential denitrifying activity in sieved soil samples was stimulated, the N2O production was lower (P<0.03) in the plot fertilized with pig slurry, indicating a lower N2O/(N2O + N2) ratio of the released gases. The pig-slurry-fertilized plot also showed a higher N2O reduction activity, which is coherent with the lower N2O production in anaerobiosis.  相似文献   
984.
Residue retention and reduced tillage are both conservation agricultural management options that may enhance soil organic carbon (SOC) stabilization in tropical soils. Therefore, we evaluated the effects of long-term tillage and residue management on SOC dynamics in a Chromic Luvisol (red clay soil) and Areni-Gleyic Luvisol (sandy soil) in Zimbabwe. At the time of sampling the soils had been under conventional tillage (CT), mulch ripping (MR), clean ripping (CR) and tied ridging (TR) for 9 years. Soil was fully dispersed and separated into 212–2000 μm (coarse sand), 53–212 μm (fine sand), 20–53 μm (coarse silt), 5–20 μm (fine silt) and 0–5 μm (clay) size fractions. The whole soil and size fractions were analyzed for C content. Conventional tillage treatments had the least amount of SOC, with 14.9 mg C g−1 soil and 4.2 mg C g−1 soil for the red clay and sandy soils, respectively. The highest SOC content was 6.8 mg C g−1 soil in the sandy soil under MR, whereas for the red clay soil, TR had the highest SOC content of 20.4 mg C g−1 soil. Organic C in the size fractions increased with decreasing size of the fractions. In both soils, the smallest response to management was observed in the clay size fractions, confirming that this size fraction is the most stable. The coarse sand-size fraction was most responsive to management in the sandy soil where MR had 42% more organic C than CR, suggesting that SOC contents of this fraction are predominantly controlled by amounts of C input. In contrast, the fine sand fraction was the most responsive fraction in the red clay soil with a 66% greater C content in the TR than CT. This result suggests that tillage disturbance is the dominant factor reducing C stabilization in a clayey soil, probably by reducing C stabilization within microaggregates. In conclusion, developing viable conservation agriculture practices to optimize SOC contents and long-term agroecosystem sustainability should prioritize the maintenance of C inputs (e.g. residue retention) to coarse textured soils, but should focus on the reduction of SOC decomposition (e.g. through reduced tillage) in fine textured soils.  相似文献   
985.
This study investigated the effects of mineral-N addition and intensive mixing (analogous to disturbance by plowing) on decomposition of 14C-labelled maize (Zea mays L.) residue and soil organic matter (SOM). Soils were collected from the upper 5 cm of three land use types at Edelweiler, Germany: plow tillage (PT), reduced tillage (RT), and grassland (GL). Soils were incubated for 112 days at 20 °C, with or without 14C-labelled maize residue (4 g DM kg−1 soil), with or without nitrogen (100 mg N kg−1 soil as NH4NO3) and with or without intensive mixing.

The effect of mineral-N on maize residue decomposition differed depending on the stage of decomposition and land use type. Nitrogen accelerated residue decomposition rates in the first 5 days in RT and GL soils, but not in PT soil, and decreased residue decomposition rate in all three land use types after 11 days. At the end of the incubation, N suppressed 14CO2 efflux in RT and PT soils, but not in GL soil. Mineral-N did not increase SOM decomposition independently on the land use types.

Intensive mixing stimulated decomposition of both plant residue and SOM in all three land use types. However, effects were smaller in GL soil than in RT or PT soil, presumably because stronger soil aggregates in GL would have been less affected by mixing and allowed greater protection of SOM and plant residue against decomposition.  相似文献   

986.
Forty-seven different animal wastes were characterized using chemical and organic matter fractionation methods (water extraction and Van Soest method) and 224-day incubation studies to assess their decomposition in soil. Simple correlation and multiple factor analysis were performed to establish relationships between the composition of these wastes and C and N mineralization. Carbon and N contents ranged from 101 to 469 mg C kg−1 dry matter (d.m.) and from 4 to 39 mg N kg−1 d.m. Soluble C and N represented less than 9% of organic C and 1.5% of total N at 20°C, respectively. The C fractions soluble at 100°C or in neutral detergent were larger and represented 14 and 32% of the organic C, respectively. The hemicellulose-like (HEM) and cellulose-like (CEL) fractions contained about 16.5 and 6% of the organic N, respectively. The C distribution in the lignin-like (LIG) and CEL fractions was comparable, but the former contained more N. Carbon mineralization varied from 5 to 62% of the organic C added during the 224-day incubation; 70% of the wastes induced net N mineralization at the end of incubation (from 3 to 51% of organic N). Other wastes induced net soil inorganic N immobilization, from −1 to −31% of the organic N added. Most highly significant correlations were established between the C mineralization and the C present in the water-soluble fraction at 20°C, and the HEM and LIG fractions. Relationships between N mineralization and biochemical characteristics were weak, except with the soluble Van Soest fraction, and highly significant correlations were observed between N mineralization rates calculated at 224 days of incubation and the organic N content or C/N ratio of wastes. Finally, an objective hierarchical classification based on composition criteria and C and N mineralization led to the definition of six different classes of wastes. It permitted differentiation between four composted wastes and intrinsically different wastes (i.e., cattle manures, pig manures, and poultry manures) which could not be objectively regrouped. It also placed some very different types of waste (solid phase from pig slurry separation, pig manures, and composted pig mixtures) in the same class.  相似文献   
987.
Dissolved organic matter (DOM) is involved in many important biogeochemical processes in soil. As its collection is laborious, very often water‐soluble organic matter (WSOM) obtained by extracting organic or mineral soil horizons with a dilute salt solution has been used as a substitute of DOM. We extracted WSOM (measured as water‐soluble organic C, WSOC) from seven mineral horizons of three forest soils from North‐Rhine Westphalia, Germany, with demineralized H2O, 0.01 M CaCl2, and 0.5 M K2SO4. We investigated the quantitative and qualitative effects of the extractants on WSOM and compared it with DOM collected with ceramic suction cups from the same horizons. The amounts of WSOC extracted differed significantly between both the extractants and the horizons. With two exceptions, K2SO4 extracted the largest amounts of WSOC (up to 126 mg C kg–1) followed by H2O followed by CaCl2. The H2O extracts revealed by far the highest molar UV absorptivities at 254 nm (up to 5834 L mol–1 cm–1) compared to the salt solutions which is attributed to solubilization of highly aromatic compounds. The amounts of WSOC extracted did not depend on the amounts of Fe and Al oxides as well as on soil organic C and pH. Water‐soluble organic matter extracted by K2SO4 bore the largest similarity to DOM due to relatively analogue molar absorptivities. Therefore, we recommend to use this extractant when trying to obtain a substitute for DOM, but as WSOM extraction is a rate‐limited process, the suitability of extraction procedures to obtain a surrogate of DOM remains ambiguous.  相似文献   
988.
ABSTRACT

Crop wastes or by-products can have the potential to be used as effective amendments to improve agricultural soil quality and/or crop yields subject to appropriate screening and testing. Sugarcane (Saccharum officinarum L.) waste by-products from an ethanol production plant, including boiler ash, filter cake, and vinasse, were applied as soil amendments at 5%, 10%, 20%, and 40% (w/w) to study the relationship between pH and organic matter (OM) on cadmium (Cd) bioavailability and adsorption via organic matter using the Cd sequential extraction procedure. Soil pH was significantly affected by aging of the treatment with boiler ash, filter cake, and vinasse. At the end of the experiment, the Cd concentrations with all treatments were mainly released in the first two extraction steps of the sequential procedure, i.e., most mobile and easily mobilized fractions. Pearson correlation analyses revealed a negative relationship between pH and bioavailable Cd and between OM and oxidizable Cd. The pH reduction induced by the amendments was a major factor affecting soil Cd bioavailability. The effect of OM on Cd fractionation could not be clearly observed and interpreted in this study.  相似文献   
989.
Summary This study aimed to establish the effects of Millsonia anomala, a tropical geophagous earthworm common in the humid savannas of Lamto (Ivory Coast), on soil organic matter dynamics over different time scales under laboratory conditions. The texture of casts produced by the worms fed on a shrub savanna soil was not significantly different from that of the soil, which showed that M. anomala ingested soil particles without selection. Physical fractionation of soil organic matter showed that the coarse organic fraction (250–2000 m) was depleted by 25–30% in fresh casts compared to the control noningested soil; this was mainly due to a fragmentation of coarse organic debris. Incubation of casts and a 2-mm sieved control soil under laboratory conditions for more than 1 year showed that the C mineralisation rate was almost four times lower in the casts (3% year-1) than in the control soil (11% year-1). We therefore concluded that on a long time scale M. anomala populations may significantly reduce the decomposition rate of soil organic matter in Lamto savannas.  相似文献   
990.
Summary Loss-on-ignition (LOI) and the organic C content have been used to estimate soil organic matter. Organic matter is often estimated from organic C by applying a factor of 1.724. Several authors have examined the relationship between LOI, used as an estimate of organic matter, and C by simple linear regressions. In the present study, this approach was examined in relation to two sets of data. LOI overestimates organic matter in soils with significant proportions of clay minerals because of bound water, and correcting for bound water gives some LOI: C ratios of less than 1. It is concluded that differences in the nature of the organic matter in different soils and horizons make the simple regression approach unsuitable. More attention needs to be paid to studies of the nature of the organic matter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号