首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   208篇
  免费   13篇
  国内免费   16篇
林业   20篇
农学   6篇
基础科学   15篇
  122篇
综合类   51篇
农作物   10篇
水产渔业   1篇
畜牧兽医   6篇
园艺   4篇
植物保护   2篇
  2024年   3篇
  2023年   2篇
  2022年   1篇
  2021年   11篇
  2020年   2篇
  2019年   1篇
  2018年   4篇
  2017年   4篇
  2016年   7篇
  2015年   7篇
  2014年   7篇
  2013年   17篇
  2012年   17篇
  2011年   19篇
  2010年   10篇
  2009年   13篇
  2008年   18篇
  2007年   11篇
  2006年   17篇
  2005年   15篇
  2004年   4篇
  2003年   7篇
  2002年   4篇
  2001年   1篇
  2000年   9篇
  1999年   3篇
  1998年   5篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1989年   3篇
  1988年   1篇
排序方式: 共有237条查询结果,搜索用时 265 毫秒
91.
控释肥对农田氮磷流失的影响研究   总被引:2,自引:0,他引:2  
李堃  司马小峰  丁仕奇  陈卓 《安徽农业科学》2012,40(25):12466-12470
[目的]研究控释肥对农田氮磷流失的影响。[方法]通过选取巢湖流域水田作物水稻和旱地作物玉米进行大田试验,分别研究了施用普通复合肥、控释复合肥和减量20%控释复合肥对农田氮磷径流流失与淋溶流失的影响。[结果]水稻和玉米氮磷的径流与淋溶流失主要发生在施肥初期,其中径流流失量均占总流失量的98%以上,而淋溶流失部分所占比例均不到2%,说明水稻和玉米营养盐的流失主要通过径流流失。相对于普通复合肥处理组,减量20%控释复合肥处理组水稻田氮磷的总流失量分别降低了60%和63%,玉米地分别降低了27.8%和34%,表明施用控释复合肥能维持作物生长后期较高的土壤养分,提高氮磷的利用效率,有效地减少雨季水稻和玉米的氮磷流失,降低农业面源污染。[结论]该研究结果表明控释肥对农田作物养分流失具有减缓作用,为控释肥的大面积推广及减轻农业面源污染等提供了科学依据和技术支撑。  相似文献   
92.
散养是白洋淀地区养鸭的主要方式,散养过程中产生的大量鸭粪因不够集中、难以收集而残留于土壤表面。借助小区模拟试验,研究了白洋淀雨季(6~9月份)残留在土壤表面的鸭粪中氮素动态变化及环境影响因素。结果表明:鸭粪中部分氮素以NH3的形式挥发,挥发期为45d左右,挥发量约为8.72kg·hm-2;NH3挥发主要集中在鸭粪排出后的7d内,挥发初期随温度降低、湿度增加和光照减弱逐渐降低,随着挥发的减弱其与环境因素相关性不明显。模拟小区地表径流中总氮(TN)流失负荷为10.05kg·hm-2,以颗粒态氮(PN)为主;可溶态氮(TDN)中,以无机氮为主。淋溶水中总氮淋失负荷为19.30kg·hm-2,以NO3--N为主。自然状态下,鸭粪中约10%氮素以NH3挥发、地表径流和淋溶流失;部分氮素残留于土壤中,另有部分未矿化鸭粪存在于土壤表面,约占鸭粪总量的45.09%。残留于土壤中的氮素一旦达到土壤临界值,将威胁当地水环境安全,因此必须采取有效措施,防止养鸭带来的过量氮素累积造成的环境污染。  相似文献   
93.
磷在稻田土壤中的淋溶和迁移模拟研究   总被引:3,自引:1,他引:2  
周全来  赵牧秋  鲁彩艳  史奕  陈欣 《土壤》2006,38(6):734-739
稻田土壤磷(P)的淋溶和迁移受到人们的普遍关注。对水稻土施P后立即进行高强度淋洗的研究表明,施P对各处理淋出液的P浓度没有明显影响,各种形态的P淋溶到60cm土层以下的浓度不超过0.1mg/kg,折合每公顷损失P量分别为可溶活性P约1.2~1.4kg,非活性P为1.2~1.6kg,全P为2.5~2.8kg,对地下水影响小。施P量低于400kg/hm2时,施入的P没有移出上层土壤;当施P量高于800kg/hm2时,P从上层向下移动现象明显;施P量超过1600kg/hm2后,移动距离可达10cm。并预测出上层土壤可能发生P的移动和淋溶的土壤Olsen-P阈值为74.1mg/kg,超过该值发生P移动和淋溶的可能性增加。  相似文献   
94.
Abstract. Bacterial contamination of water is a problem worldwide and is often acute in developing countries where human and animal waste is disposed of on land for use as fertilizer or because of poorly developed sanitation systems. Studying leaching risk through soils is difficult when no suitable microbiological laboratory is available. A method using the movement of ZnO particles through soils as a surrogate for studying bacteria directly was tested. ZnO particles with a similar size to bacteria can readily be detected by chemical analysis. For a range of nine different soil textures, leaching rates of ZnO particles under near saturated conditions were significantly correlated with leaching rates of Escherichia coli cells ( P =0.013). For both ZnO and E. coli , leaching was generally greatest through fine textured soils.  相似文献   
95.
李烜桢  汪金舫 《土壤通报》2007,38(6):1110-1113
采用Bowman和Cole提出的有机磷分级体系,分3个灌水量对外源活性有机磷β-甘油磷酸钠在黄棕壤中的淋溶和转化特征进行了研究。结果表明,大于50mm的灌水量可以使β-甘油磷酸钠发生淋溶。施入黄棕壤中的β-甘油磷酸钠在24h内可以转化为速效磷和中活性有机磷,灌水量愈大,速效磷和中活性有机磷积累的土层也愈深。中稳性有机磷和高稳性有机磷含量没有明显变化。  相似文献   
96.
Sulfur mineralization rates and potentials of soils   总被引:3,自引:0,他引:3  
Summary Field-moist soil and glass beads mixtures were packed in glass tubes and leached with 100 ml of 5 mM CaCl2 and incubated at 20 or 30°C. The leaching procedure was repeated every 2 weeks for 14 weeks. The leachates were analysed for SO inf4 sup2– and NO3 . The S uptake by three successive croppings of corn (Zea mays L.) or soybean [Glycine max (L.) Merr.] at 40- or 60-day intervals, respectively, or three cuttings of ryegrass (Lolium multiflorum L.) at 30-day intervals were studied under greenhouse conditions. Results showed that significantly greater amounts of S were mineralized at 30°C than at 20°C in each of 13 Iowa and 7 Chilean surface soils. Expressed as percentages of organic S in soils, the amounts of S mineralized in the Iowa surface soils in 14 weeks at 20 and 30°C ranged from 1.2% to 9.8% and from 2.4% to 17.5%, respectively. The corresponding values for the Chilean soils ranged from 0.9% to 7.2%6 and from 1.4% to 12.1%. The Q10 values of S mineralization ranged from 1.7 to 4.4 (average 2.5) for the Iowa soils and from 1.7 to 3.1 (average 2.1) for the Chilean soils. The cumulative S mineralized at 20°C in 14 weeks was significantly correlated with the cumulative N mineralized (linear model, r=0.72**; quadratic model, r=0.84***). Similarly, the cumulative S mineralized at 30°C was significantly correlated with the cumulative N mineralized at this temperature (linear model, r=0.81***; quadratic model, r = 0.82***). The potentially mineralizable S pool (S0), calculated by using an exponential equation for the S mineralized at 20°C, ranged from 5 to 44 mg kg–1 for the Iowa soils and from 10 to 25 mg kg–1 for the Chilean soils. The corresponding values obtained by using a reciprocal-plot technique ranged from 6 to 48 mg kg–1 and from 12 to 26 mg kg–1, respectively. The S0 values calculated for S mineralized at 30°C, in general, were higher than those obtained at 20°C. The S mineralization rate constant (k) and the time required to mineralize 50% of S0 (K t), calculated by using the cumulative SO inf4 sup2– released during 14 weeks of incubation, varied considerably among the soils. Up take of S by corn and soybean (tops+roots) were, in general, lower than the total SO inf4 sup2– mineralized in 14 weeks at 20°C.  相似文献   
97.
Summary Oniscus asellus produced changes in the nutrients leached from Oie and Oa horizons of a hardwood forest soil. Soil with isopods lost more K+ (54%) from the Oie horizon and more Ca2+ (25%), Mg2+ (40%), and water-extractable S (23%) from the Oa horizon than soil without isopods. In contrast, soils with isopods lost less Ca2+ (39076) from the Oie horizon and less dissolved C-bonded S (33%) from the Oa horizon than soil without isopods. In addition, the Oia and Oa horizons exhibited different nutrient dynamics. When isopods were present, the Oa horizon leachates accumulated more Na+ K+, Ca2+, Mg2+, NO3 , water-soluble SO4 2–, and dissolved C-bonded S, and the Oie horizon retained more of these nutrients. The type of leaching solution also had a major effect on nutrients. Leaching with a simulated soil solution resulted in smaller nutrient losses for K+ and Mg2+ in both horizons and for Na+, Ca2+, and NO3 in the Oa horizon than leaching with distilled water.  相似文献   
98.
Herbicides are key products in sustaining agricultural production and, to minimize agro-environmental concerns regarding their use, continued assessment of their behavior under different management practices is required. Leaching and runoff losses of four herbicides applied preplant-incorporated (PPI) were evaluated in two tillage systems over a 3-year period (1989–1991). Scant leaching during the droughty 1991 growing season limited treatment evaluations to 2 years. Herbicides were applied at recommended rates (1.7 and 2.2 kg active ingredient (a.i.) ha−1) to conventional tillage (CT) and mulch tillage (MT) corn (Zea mays L.) fields on Hagerstown silty clay loam (fine, mixed, mesic Typic Hapludalf). Tillage treatments were defined as moldboard plow-disk-harrow (CT) and single-disking (MT). During this study, CT followed 5 years of corn production in a comparable CT system on this site and, similarly, MT followed a 5-year no-tillage (NT) system. Herbicides were applied preemergence (PRE) to CT and NT in the 5-year study and preplant-incorporated (PPI) in this study. Herbicide mobility in subsurface drainage was evaluated from herbicide mass transported to pan lysimeters installed 1.2 m deep. Surface drainage losses of these chemicals were determined from residues in runoff collected with automated sampling and recording equipment.

Leachate volumes were greater from MT than CT in 1989 and 1990 and exceeded all seasonal losses during the previous 5 years under NT management. Comparisons of total seasonal leachate discharged to pan lysimeters within and among studies and herbicide mass leached showed that timing of leachate-inducing precipitation relative to herbicide application was the key factor in regulating herbicide translocation. Herbicide mass transported through the root zone averaged from less than 0.1% to 0.9% of applied rates in CT and from 1.4% to 5.1% in MT.

Leachate-availability of herbicide residues and extent of herbicide longevity in this soil under MT conditions were similar to previous findings under NT management. Despite these behavioral similarities for herbicides among tillages, herbicide mass discharged per unit of percolate was most often lower for MT compared with NT, particularly in early growing seasons of comparable precipitation. Thus, the PPI treatment in MT appeared to reduce leaching of these chemicals compared with PRE application in NT.

Runoff losses of PPI herbicides ranged from 0.35% to 0.77% of applied rates in CT and from 0.13% to 0.28% in MT. Losses of PRE-applied herbicides from NT averaged less than 0.1% of applied rates; maximum yearly losses ranged from 0.06% to 0.18%. Thus, the character of the disked, minimally tilled surface provided a level of impedance to runoff that was greater than achieved with the tilled surface on this 3 to 5% slope, but less than previously obtained with an untilled, mulch-covered surface.  相似文献   

99.
李本银  刘月娟  汪金舫 《土壤》2005,37(5):551-554
采用不同灌溉水量和施N量,研究了尿素在潮土中的淋溶和转化特征。结果表明,在小麦返青期结合灌溉施尿素后,NH4 -N在40cm以上土层中积累,不会产生深层淋溶。而土层中NO3--N含量有较大变化,相同灌溉水量下,施N量越大,NO3--N向下层淋溶越深;相同施N量下,灌溉水量越大,NO3--N也有淋溶越深的趋势。在麦季,即使在超过当地的施N量(N180kg/hm2)和灌溉水量(750m3/hm2)条件下,收获时所有处理的NO3--N主要积累在130cm以上的土层中,NO3--N淋溶深度不超过130cm,不会产生对地下水的污染。  相似文献   
100.
Availability and leaching of dissolved inorganic N (DIN = NH4+ + NO3-) in soil were measured in a periodically flooded forest of the Central Amazon floodplain (várzea) during one terrestrial phase. Special emphasis was on the effects of a legume and a non-legume tree species. NH4+-N accounted for more than 85% of DIN even at the end of the terrestrial phase although it decreased throughout the experimental period. While extractable NO3-N was always low in the soil (less than 15% of DIN), the amount of leached NO3-N was in the same range as NH4+-N. Under the legume trees mean DIN contents of the topsoil were higher than under the non-legume trees. DIN leaching from the topsoil (0–20 cm) was significantly higher under the legume trees than at the other sites, also indicating a higher N availability. Therefore, despite considerable leaching legume trees may be an important source of N supporting a high biomass production of the várzea forest.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号