首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   3篇
  国内免费   8篇
林业   10篇
农学   12篇
  20篇
综合类   53篇
农作物   38篇
畜牧兽医   7篇
园艺   1篇
植物保护   23篇
  2024年   2篇
  2023年   2篇
  2022年   2篇
  2021年   4篇
  2020年   1篇
  2018年   1篇
  2017年   3篇
  2016年   6篇
  2015年   5篇
  2014年   5篇
  2013年   10篇
  2012年   11篇
  2011年   20篇
  2010年   15篇
  2009年   11篇
  2008年   9篇
  2007年   8篇
  2006年   13篇
  2005年   7篇
  2004年   3篇
  2003年   5篇
  2002年   3篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1987年   6篇
排序方式: 共有164条查询结果,搜索用时 0 毫秒
31.
转基因耐草甘膦作物的环境安全性   总被引:1,自引:0,他引:1  
世界每年因草害造成的作物产量损失达950亿美元,为了简便有效地防除多种杂草,农民希望喷施杀草谱广的除草剂。转基因耐除草剂作物的种植为农民提供了更多的除草剂选择,在扩大杀草谱、提高除草效果、增加作物安全性、改善环境、简化栽培等方面起到了积极作用。转基因耐除草剂作物的大面积种植也引起了全球对其环境安全问题的广泛关注。本文以耐草甘膦作物为例,对国内外环境安全的相关研究结果进行归纳和总结,以期为我国耐草甘膦转基因作物的环境安全评价及耐草甘膦作物的管理提供参考。  相似文献   
32.
类黄酮在草甘膦诱导的苦荞膜脂过氧化中的作用   总被引:2,自引:0,他引:2  
研究了草甘膦对苦荞类黄酮次生代谢的影响及类黄酮与草甘膦作用下膜脂过氧化伤害的关系,以探讨植物类黄酮代谢的意义及在草甘膦伤害中的作用机制。结果表明,分别用浓度为0.1、0.3、1mmoL/L的草甘膦处理苦荞幼苗,苦荞类黄酮代谢受到明显抑制,处理3天时类黄酮含量比对照分别下降58.1%、65.8%和76.5%。草甘膦处理导致苦荞膜脂过氧化加剧,0.1mmoL/L草甘膦处理使苦荞相对电导率增加275.4%、丙二醛(MDA)含量增加134.1%、超氧自由基O2^-产生速率增加121.7%,且随草甘膦浓度升高而增加幅度加大,说明草甘膦伤害与膜脂过氧化程度有关。0.3mmoL/L草甘膦处理后再用0.1mmoL/L类黄酮物质芦丁处理,电解质外渗下降34.2%,MDA含量下降51.1%,O2^-产生下降33.9%,明显减轻了草甘膦的伤害,这说明草甘膦作用下类黄酮含量的下降与草甘膦对苦荞组织伤害有一定的关系。  相似文献   
33.
耐草甘膦菜豆耐性机理的初步研究   总被引:2,自引:0,他引:2  
采用液谱测定耐性、感性菜豆叶片对草甘膦的吸收及草甘膦传导入根中的量。耐性、感性菜豆吸收、传导草甘膦无差异。耐性、感性菜豆 EPSP合成酶提取物中的蛋白质含量分别为 3.0 0 mg/ m L和 3.0 8mg/ m L ,EPSP合成酶的比活性分别为 2 .13nmol· min-1· mg-1蛋白和 1.97nmol· min-1· mg-1蛋白 ,但耐性、感性菜豆 EPSP合成酶比活性被草甘膦不同浓度抑制的差异大 ,抑制耐性菜豆 EPSP合成酶活性的草甘膦浓度 I50 为 19.2μmol/ L ,而感性的 I50 为 6 .3μmol/ L。两种菜豆对草甘膦的耐性差异在于各自的 EPSP合成酶比活性被草甘膦的抑制程度不同。  相似文献   
34.
The effects of exposure of human erythrocytes to different concentrations of Roundup Ultra 360 SL and its active compound glyphosate were studied. We studied hemolysis after 1, 5, and 24 h incubation; lipid peroxidation, hemoglobin oxidation, the level of reduced glutathione, and the activity of catalase after 1 h. Human erythrocytes were incubated with 100-1500 ppm (100 μg/ml erythrocytes at 5% hematocrite) Roundup Ultra 360 SL and glyphosate. We have found that after 1 h of incubation only Roundup Ultra 360 SL increased the level of methemoglobin, products of lipid peroxidation at 500 ppm and hemolysis at 1500 ppm [Curr. Top. Biophys. 26 (2002) 245], while its active compound glyphosate increased the level of methemoglobin and the level of lipid peroxidation at much higher dose—1000 ppm. At the same time hemolysis was observed to only at the highest dose of glyphosate (1500 ppm) and the longest time of incubation (24 h). Both Roundup Ultra 360 SL and glyphosate did not cause statistically significant changes in the level of GSH, but increased the activity of catalase. Roundup Ultra 360 SL provokes more changes in the function of erythrocytes than its active substance glyphosate, which is probably a result of the properties of additives. Taking into account the limited accumulation of Roundup Ultra 360 SL and glyphosate in the organism as well as the fact that the threshold doses which caused changes in erythrocytes for Roundup Ultra 360 SL were only 500 and 1000 ppm for glyphosate, one may conclude that this pesticide is safe towards human erythrocytes.  相似文献   
35.
In recent years flaxleaf fleabane has become a widespread and difficult-to-control weed in no-tilled fallowed fields, where weeds are controlled by applications of glyphosate, in annual cropping systems of north-east Australia. Fifty-two populations, collected in a national survey from agricultural and non-agricultural areas, were tested in two glyphosate dose-response pot experiments. In two subsequent pot experiments, a sub-set of these populations was tested with a field rate of glyphosate when weeds of two ages were grown at different soil moistures. In the first and second experiments, most populations collected from chemical fallowed or cropped fields in north-east Australia had GR50 (estimated dose for 50% biomass reduction) values three to six times greater than the susceptible populations, indicating low levels of glyphosate resistance. Several populations from roadsides adjacent to chemical fallowed or cropped fields also had higher GR50 values, indicating movement of seeds from resistant plants. In the third experiment, weed biomass of all populations from chemical fallowed or cropped fields was 70-98% of unsprayed compared to 2-3% for the susceptible populations, irrespective of weed age or soil moisture. In the fourth experiment which treated older weeds, the response of several resistant populations to glyphosate was unaffected by differences in weed age and soil moisture, whereas the biomass of the other resistant populations was greater following spraying of older and/or moisture stressed plants compared with smaller non-stressed plants. Thus, exclusive reliance on glyphosate for fallow weed control in this region has resulted in the evolution of resistance in flaxleaf fleabane populations in a cropping system with annual non-transgenic crops. Prolific production of windborne seeds, combined with poor control associated with spraying large moisture-stressed weeds, is likely to have contributed also to flaxleaf fleabane becoming such a problem weed.  相似文献   
36.
[目的]从福建三农集团污水处理池的活性污泥中分离草甘膦降解菌株,研究其降解特性。[方法]采用富集驯化和选择性培养,分离能以草甘膦为唯一碳源、氮源的酵母菌S-2,对其降解特性进行了研究。[结果]适宜菌株S-2生长和获得最佳降解率的条件为:接种量4%、pH值7.0、温度30℃、转速130~160r/min。[结论]该研究为草甘膦的生物降解与污染土壤的生物修复提供必要的参考。  相似文献   
37.
抗草甘膦基因aroAM12及抗虫基因Bts1m的转基因棉株   总被引:20,自引:0,他引:20  
构建了一种新的植物高效表达载体pAM12-s1m,其上携带有通过基因优化(gene shuffling)技术获得的抗草甘膦突变基因(aroAM12)和抗虫人工合成重组Bt基因(Bts1m)。aroAM12基因表达由CaMV35S启动子控制,Bts1m基因表达由2E-35S启动子和Ω因子控制。以棉花无菌苗下胚轴为外植体,采用农杆菌介导法将aroAM12和Bts1m基因导入棉花  相似文献   
38.
草甘膦生物抗性和生物降解及其转基因研究   总被引:24,自引:0,他引:24  
草甘膦(N—phosphonomethyl—glycine,glyphosate)毒性作用机理是竞争性抑制莽草酸途径中的5-烯醇丙酮莽草酸-3-磷酸合成酶(5-enolpyruvyl—shikimate—3—phosphate synthase,简称EPSP合成酶)的活性。EPSP合成酶是植物和微生物体内芳香族氨基酸(包括色氨酸、酪氨酸、苯丙氨酸等)生物合成过程中的一个关键酶。该酶由aroA基因编码。抗草甘膦微生物或植物中EPSP合成酶基因的核苷酸序列在相同或相近位点发生了突变。将编码EPSP合成酶的突变基因导入大豆和烟草等作物中,均能获得转基因的抗草甘膦作物。草甘膦的生物降解途径主要有两条,C-N断裂生成氨甲基磷酸(AMPA)或C-P键断裂生成肌氨酸(sarcosine),然后两种中间代谢物进一步代谢为磷酸、甘氨酸和二氧化碳等。  相似文献   
39.
In perennial crops like coffee, glyphosate drift exposure can occur multiple times during its commercial life span. Due to limited glyphosate degradation in higher plants, a potential accumulation of glyphosate could lead to increased biological effects with increased exposure frequency. In this study, we investigated glyphosate translocation over time, and its concentration and biological effects after single and multiple simulated spray-drift exposures. Additionally, shikimic acid/glyphosate ratios were used as biomarkers for glyphosate binding to its target enzyme.Four weeks after the exposure, glyphosate was continuously translocated. Shikimic acid levels were linear correlated with glyphosate levels. After two months, however, glyphosate appeared to have reduced activity. In the greenhouse, multiple applications resulted in higher internal glyphosate concentrations. The time of application, however, was more important regarding biological effects than the number of applications both in the greenhouse and in the field. In the field, berry yield, the most important biological response variable, was reduced 26% by the first out of four sequential applications of glyphosate at 64 g a.e. ha−1 each. The three subsequent applications did not reduce yield any further.  相似文献   
40.
The aim of this study was to investigate the possible influence of surface topographical features on the spatial variability of glyphosate degradation and some microbial characteristics in sandy loam soil. Soil samples were taken from the ploughed layer across an agricultural field after seedbed preparation for grain (Grue site), and down to 1 m depth under a ridge tilled field (Målselv site), both sites having similar soil textural characteristics (sandy loam soil). Laboratory experiments were performed looking at glyphosate mineralization and soil microbial activity at the Grue site, as well as microbial biomass, activity and substrate utilization patterns at the Målselv site. Microbial biomass and activity decreased, and substrate utilization patterns changed with increasing soil depth, reflecting naturally occurring changes in quantity and quality of soil organic carbon. Further, our results show that considerable spatial heterogeneity in the degradation rate of glyphosate and general carbon utilization exists even across small areas within a single agricultural field. This horizontal variability was observed over several spatial scales, and could not be clearly explained. It evidently arose from differences in environmental factors affecting microbial activity and growth, and topographical features controlling redistribution of water and matter flow patterns were correlated to the investigated soil microbial variables.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号