首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   330篇
  免费   32篇
  国内免费   44篇
林业   4篇
农学   22篇
基础科学   6篇
  252篇
综合类   70篇
农作物   32篇
水产渔业   2篇
畜牧兽医   10篇
园艺   8篇
  2024年   15篇
  2023年   22篇
  2022年   28篇
  2021年   22篇
  2020年   21篇
  2019年   30篇
  2018年   25篇
  2017年   44篇
  2016年   55篇
  2015年   45篇
  2014年   32篇
  2013年   23篇
  2012年   22篇
  2011年   16篇
  2010年   4篇
  2009年   2篇
排序方式: 共有406条查询结果,搜索用时 15 毫秒
91.
生物炭改土对植烟土壤理化性状动态变化的影响   总被引:5,自引:0,他引:5  
通过盆栽试验,研究了生物炭不同施用量对植烟土壤容重、pH值、有机质和速效养分含量及其在烤烟生长期内变化规律的影响。结果表明,每盆施用生物炭1~2 kg能显著降低土壤的容重,降幅在12%~20%,并且能提高土壤的pH值。土壤有机质含量与生物炭的施用量呈线性相关关系。施用生物炭能降低土壤碱解氮的含量,限制了土壤的氮素利用度;对土壤速效磷没有显著影响,能显著提高土壤速效钾的含量,并使土壤具备持续提供钾素的能力。  相似文献   
92.
施用生物炭后塿土土壤微生物及酶活性变化特征   总被引:33,自引:5,他引:28  
以小麦-玉米轮作试验为研究对象,探究了施用不同量生物炭对塿土土壤生物活性动态变化的影响。生物炭用量设5个水平:B0(0 t·hm-2)、B20(20 t·hm-2)、B40(40 t·hm-2)、B60(60 t·hm-2)和B80(80 t·hm-2),氮磷钾肥均作基肥施用。结果表明:生物炭可显著提高土壤脲酶、过氧化氢酶和玉米收获后碱性磷酸酶活性,但对蔗糖酶和小麦季碱性磷酸酶活性影响不显著,且显著提高土壤酶指数;提高土壤微生物量碳氮含量,用量为80 t·hm-2时效果最显著,但降低土壤微生物量碳氮比;显著增加土壤三大类微生物类群的数量,增幅随其用量的增加而增加。动态变化显示,越冬期的土壤微生物量碳氮含量最低,但微生物量碳在拔节期出现高峰,而土壤微生物量氮在返青期出现高峰,与作物生育旺盛时期一致;显著减少微生物量碳和微生物量碳氮比的季节波动。施用生物炭可显著改善土壤微生物和酶活性,土壤酶指数为土壤酶活性的综合表征,可全面反映土壤酶活性对生物炭的响应特征,能够作为一种土壤质量评价方法。  相似文献   
93.
榆林能源矿产资源富集一地,使得重金属污染物进入农业环境,尤其Cd、Hg污染较为严重,受污染土壤极大地降低了农作物品质,并通过食物链影响人们的身体健康。因此,本试验以菠菜为供试作物,研究三种添加量生物炭对镉/汞污染沙土及菠菜生长发育的影响,结果表明:不同添加量生物炭对不同处理土壤及种植菠菜生长发育的影响不同,但均有改良作用。但5%生物炭对镉/汞复合污染下土壤上菠菜生长影响效果最明显。(1)不同添加量生物炭对不同处理土壤菠菜生长均有促进作用。5%生物炭可显著提高镉/汞污染沙土菠菜的生理生长指标,包括株高、茎粗、叶长、叶宽及叶绿素含量、蒸腾速率、光合速率、胞间CO2、气孔导度等。(2)不同添加量生物炭均可改善菠菜的品质,尤其对于镉/汞复合污染沙土,5%生物炭处理时菠菜可溶性糖、可溶性蛋白、脯氨酸含量最大,较CK分别增加11.9%、34.4%、11.8%,草酸含量降低24.7%;而对于原始沙土、单Cd污染和单Hg污染沙土下种植菠菜,可以通过添加10%的生物炭进行改善品质。  相似文献   
94.
生物炭添加对滨海盐土柳枝稷生长的影响   总被引:2,自引:0,他引:2  
为探究生物炭在滨海盐土改良中的作用以及对植物生长的影响,通过田间试验,采用穴施方式添加450℃热解玉米秸秆炭(1%、2%),分析了滨海盐土理化性质和柳枝稷生长特性的响应。结果表明:生物炭添加后第一个生长季,土壤容重降低3.9%以上,田间持水量、毛管孔隙度、有机碳含量分别提高7.4%、4.0%、68.3%以上,柳枝稷成活率提高18.4%以上,地上和地下干重分别增加198.4%、91.4%以上,地上部和地下部的生长明显改善,柳枝稷可以选择性地吸收K+。因此,采用穴施方式添加生物炭,可以改善滨海盐土的部分理化性质,进而促进柳枝稷的生长,提升其耐盐能力。  相似文献   
95.
[目的]为了研究不同生物质炭施用量及类型对汉中烤烟生长发育及产量、产值的影响。[方法]于2013年5月~9月,在陕西省汉中市南郑县小南海镇布置田间小区试验,对不同生物质炭施用量及类型下的各个生育时期烟叶农艺性状、产量和产值进行比较分析。[结果]施用生物质炭可明显增加烟叶生育中前期株高、茎围和叶片大小,增加烟叶产量、产值和中上等烟叶比例。随着生物质炭施用量的增加,烟叶各生育时期农艺性状均显著改善,产量、产值和中上等烟叶比例明显增加,且在施用量为900 kg/hm2时达到最高。稻壳炭和麦秆炭对改善烟叶农艺性状明显优于花生壳炭,稻壳炭更有利于旺长期叶片及现蕾期茎秆的发育,而麦秆炭有利于提高旺长期株高和有效叶数以及现蕾期叶片的发育,且施用稻壳炭提高烟叶产量、产值的效果最好。[结论]施用生物质炭是汉中烟区改良植烟土壤、促进烟叶生长发育的有效措施,生物质炭施用量宜控制在穴施600~900 kg/hm2左右,可优先选择稻壳炭作为土壤改良的材料。  相似文献   
96.
生物炭是将农作物秸秆、木屑等含碳量丰富的生物质材料在无氧或限氧的条件下热解而得到的一种细粒度、多孔性的碳质材料,其农业利用的发展前景广阔.原料种类、生产过程中的温度以及添加物料对生物炭的性质都有较大的影响.土壤中施用生物炭可以改变土壤的基本性质、土壤养分和离子的赋存特征、土壤微生物和酶活性.生物炭施用量影响其作用效果.施用生物炭能够明显改变作物根系和植株的系统发育,影响产量和品质构成.要进一步强化生物炭与土壤的氮、磷等营养物质的互作效应、生物炭性质特征与保护地土壤质量改善、生物炭对作物生理生化和产量品质的影响以及“生物炭-土壤-作物”连续体等方面的研究.  相似文献   
97.
农业废弃物制备的生物质炭对红壤酸度和油菜产量的影响   总被引:6,自引:0,他引:6  
李九玉  赵安珍  袁金华  徐仁扣 《土壤》2015,47(2):334-339
利用自行研制的生物质炭化炉在田间条件下制备花生秸秆炭和油菜秸秆炭,采集秸秆气化站产生的稻壳炭,研究了这3种生物质炭对酸性土壤的改良效果和对油菜产量的影响。结果表明:施用稻壳炭、花生秸秆炭和油菜秸秆炭均可提高土壤p H,降低土壤交换性酸含量,效果随施用量的增加而增强。生物质炭对酸性土壤的改良效果主要决定于其本身的含碱量,施用花生秸秆炭和油菜秸秆炭显著增加土壤交换性盐基阳离子、有效磷、有效阳离子交换量和盐基饱和度,并提高油菜籽产量。田间条件下施用花生秸秆炭和油菜秸秆炭3年后土壤p H仍明显高于对照处理,说明生物质炭对土壤酸度的改良具有持续性。因此,花生秸秆炭和油菜秸秆炭是优良的酸性土壤改良剂。  相似文献   
98.
Biochar has a great potential for enhancing soil fertility and carbon sequestration while enabling beneficial waste disposition. Because of the potential for widespread application, it is essential to proactively assess and mitigate any unintended consequences associated with soil biochar amendment. We conducted soil avoidance tests, growth and reproduction tests, and oxidative stress assays with the earthworm Eisenia foetida to assess the potential toxicity of soil amended with biochar produced from apple wood chips. Earthworms avoided soils containing 100 and 200 g/kg dry biochar at statistically significant levels (p < 0.05), and after 28-day incubation, these earthworms lost more weight than those in control (unamended) soil. However, biochar did not affect the reproduction of earthworms. We investigated whether the observed avoidance was due to nutrition deficiency, desiccation, or the presence of toxic polynuclear aromatic hydrocarbons (PAHs) formed during biochar production by pyrolysis. Nutrition deficiency was excluded by the lack of earthworm avoidance to soil amended with nutrient-deficient sand instead of biochar. Although traces of PAH were detected in the tested biochar (e.g., 25.9 μg/kg fluorene, 3290 μg/kg naphthalene, and 102 μg/kg phenanthrene), the lack of lipid peroxidation and no increase in superoxide dismutase activity in biochar-exposed earthworms suggests that presence of toxic compounds was not a likely reason for avoidance. Furthermore, wetting the biochar to its field capacity resulted in statistically undetectable avoidance relative to control soil, indicating that insufficient moisture could be a key factor affecting earthworm behavior in soil amended with dry biochar. To avoid desiccation of invertebrates and enable their beneficial ecosystem services, we recommend wetting biochar either before or immediately after soil application.  相似文献   
99.
Biochar effects on soil biota - A review   总被引:3,自引:0,他引:3  
Soil amendment with biochar is evaluated globally as a means to improve soil fertility and to mitigate climate change. However, the effects of biochar on soil biota have received much less attention than its effects on soil chemical properties. A review of the literature reveals a significant number of early studies on biochar-type materials as soil amendments either for managing pathogens, as inoculant carriers or for manipulative experiments to sorb signaling compounds or toxins. However, no studies exist in the soil biology literature that recognize the observed large variations of biochar physico-chemical properties. This shortcoming has hampered insight into mechanisms by which biochar influences soil microorganisms, fauna and plant roots. Additional factors limiting meaningful interpretation of many datasets are the clearly demonstrated sorption properties that interfere with standard extraction procedures for soil microbial biomass or enzyme assays, and the confounding effects of varying amounts of minerals. In most studies, microbial biomass has been found to increase as a result of biochar additions, with significant changes in microbial community composition and enzyme activities that may explain biogeochemical effects of biochar on element cycles, plant pathogens, and crop growth. Yet, very little is known about the mechanisms through which biochar affects microbial abundance and community composition. The effects of biochar on soil fauna are even less understood than its effects on microorganisms, apart from several notable studies on earthworms. It is clear, however, that sorption phenomena, pH and physical properties of biochars such as pore structure, surface area and mineral matter play important roles in determining how different biochars affect soil biota. Observations on microbial dynamics lead to the conclusion of a possible improved resource use due to co-location of various resources in and around biochars. Sorption and thereby inactivation of growth-inhibiting substances likely plays a role for increased abundance of soil biota. No evidence exists so far for direct negative effects of biochars on plant roots. Occasionally observed decreases in abundance of mycorrhizal fungi are likely caused by concomitant increases in nutrient availability, reducing the need for symbionts. In the short term, the release of a variety of organic molecules from fresh biochar may in some cases be responsible for increases or decreases in abundance and activity of soil biota. A road map for future biochar research must include a systematic appreciation of different biochar-types and basic manipulative experiments that unambiguously identify the interactions between biochar and soil biota.  相似文献   
100.
Recognition of biochar as a potential tool for long-term carbon sequestration with additional agronomic benefits is growing. However, the functionality of biochar in soil and the response of soils to biochar inputs are poorly understood. It has been suggested, for example, that biochar additions to soils could prime for the loss of native organic carbon, undermining its sequestration potential. This work examines the priming potential of biochar in the context of its own labile fraction and procedures for their assessment. A systematic set of biochar samples produced from C4 plant biomass under a range of pyrolysis process conditions were incubated in a C3 soil at three discrete levels of organic matter status (a result of contrasting long-term land management on a single site). The biochar samples were characterised for labile carbon content ex-situ and then added to each soil. Priming potential was determined by a comparison of CO2 flux rates and its isotopic analysis for attribution of source. The results conclusively showed that while carbon mineralisation was often higher in biochar amended soil, this was due to rapid utilisation of a small labile component of biochar and that biochar did not prime for the loss of native organic soil organic matter. Furthermore, in some cases negative priming occurred, with lower carbon mineralisation in biochar amended soil, probably as a result of the stabilisation of labile soil carbon.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号