首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   8篇
  国内免费   9篇
农学   1篇
基础科学   1篇
  85篇
综合类   30篇
农作物   6篇
水产渔业   4篇
畜牧兽医   12篇
园艺   1篇
  2024年   3篇
  2023年   4篇
  2022年   8篇
  2021年   10篇
  2020年   6篇
  2019年   10篇
  2018年   8篇
  2017年   13篇
  2016年   9篇
  2015年   11篇
  2014年   10篇
  2013年   11篇
  2012年   10篇
  2011年   5篇
  2010年   7篇
  2009年   4篇
  2008年   2篇
  2007年   5篇
  2006年   3篇
  1997年   1篇
排序方式: 共有140条查询结果,搜索用时 62 毫秒
61.
从农田土壤生态系统中硝化和甲烷氧化的研究意义、氨氧化和甲烷氧化的功能微生物演替规律,以及二者交互作用机制三个方面综述了现阶段取得的主要研究成果,并进一步阐述了土壤碳氮元素生物地球化学循环机制研究的科学问题和面临的挑战。未来研究应充分利用学科交叉,结合宏观结果和土壤微观动态过程,揭示土壤中不可培养微生物代谢能力及其在土壤生物地球化学循环中的重要作用,逐步实现对土壤生态过程的预测和调控。  相似文献   
62.
为增强氨杀灭土壤病原微生物、防控作物土传病害的效果,采用室内培养和盆栽试验的方法,研究了硝化抑制剂DMPP和(或)碳酸氢铵预处理潮土15 d,对土壤理化性质和土壤细菌、真菌、氨氧化菌、辣椒疫霉菌数量的影响以及对辣椒疫病的防效,并对辣椒疫病的发病率与土壤理化及微生物学性状进行相关性分析,为开发新的防控辣椒疫病的技术提供依据。结果表明,施加DMPP的土壤铵态氮含量显著高于对照,而土壤pH、硝态氮和亚硝态氮含量显著低于对照。碳酸氢铵和DMPP配合施用处理土壤15 d,土壤细菌amo A基因拷贝数和辣椒疫霉菌ITS基因拷贝数分别降低34.9%(P0.05)和93.8%(P0.05);土壤16S r RNA基因拷贝数比未添加DMPP处理高出54.7%(P0.05);DMPP对土壤氨氧化古菌amo A基因拷贝数无显著影响。栽植辣椒28 d后,DMPP和碳酸氢铵配合施用处理的辣椒疫霉菌ITS基因拷贝数最低(2.1×10~5 copies·g~(-1)),其次为DMPP(15.4×10~5 copies·g~(-1));对照辣椒根际疫霉数量最高(37.1×10~5 copies·g~(-1)),分别比碳酸氢铵处理、DMPP处理和DMPP和碳酸氢铵配合施用处理高0.4倍、1.4倍和16.8倍。碳酸氢铵或DMPP处理过的土壤栽植辣椒28 d后,对照辣椒疫病发病率最高(95.00%),仅施用碳酸氢铵处理发病率次之(85.00%),DMPP和碳酸氢铵配合施用处理的发病率最低(32.20%),其防治效果达66.11%。辣椒疫病的发生率与土壤电导率、硝态氮含量、疫霉菌数量正相关,与土壤pH、铵态氮含量、细菌及真菌数量负相关。综上,碳酸氢铵和DMPP配合施用降低潮土氨氧化细菌的数量,从而增加铵态氮而降低硝态氮含量,提高了土壤pH,进而降低土壤疫霉菌数量,因而能有效防控辣椒疫病。  相似文献   
63.
采用PCR—DGGE技术,研究了抗盐碱转基因大豆(SRTS)对根际与非根际土壤氨氧化古菌(AOA)群落多样性的影响。结果表明,在非根际土壤中,SRTS的氨氧化古菌DGGE条带数、多样性指数显著高于其受体亲本黑农35和其他两种大豆处理,而均匀度指数较低;在根际土壤中,SRTS的DGGE条带数和多样性指数均高于其受体亲本,但并不显著,其均匀度指数则显著高于其他处理;每种大豆自身根际与非根际比较显示,SRTS非根际氨氧化古菌DGGE条带数、多样性指数明显高于根际,均匀度指数却低于根际,而其受体亲本与其他两个处理反之。聚类分析结果表明,SRTS的DGGE带谱与其他大豆处理差异较大,且自身非根际与根际处理差异显著,与其受体亲本黑农35相似性很低。测序结果表明,在SRTS处理中特有条带12、15和优势条带13、14均属于Uncultured crenarchaeote。在盐碱土壤生态系统中,SRTS提高了非根际土壤氨氧化古菌群落的多样性,但对根际土壤中氨氧化古菌的群落多样性有一定的抑制作用。  相似文献   
64.
[目的]揭示乌鲁木齐地震断裂带泉水中古菌群落对水文地球化学元素变化的响应.[方法]采用微孔滤膜法收集泉水中菌体,直接提取环境总DNA,嵌套式PCR扩增古菌16S rDNA基因V3区,变性梯度凝胶电泳(DGCE)检测古菌群落结构的变化,所得信息与监测的地球化学指标进行典型相关分析.[结果]DGGE分析及切胶测序共得到古菌14个主要类群,分属于广域古菌和泉古菌两个门,全部为不可培养类群,其中前者占绝对优势.典型相关性分析发现类群B-11和B-12与He以及CH<,4>含量呈正相关,与硫化物呈负相关;类群B-2、B-3和B-9与F<'->离子含量成正相关而类群B-13与它呈负相关;而仅有的泉古菌B-7与CH呈负相关.另外,所得绝大部分古菌类群与其它冷泉或者低温环境中发现的古菌类群具有95;左右的相似性.[结论]乌鲁木齐断裂带泉水古菌群落能够对泉水中的某些地球化学元素变化产生一定的响应,并且可能存在大量嗜冷新类群.  相似文献   
65.
Due to the severe degradation of wetland ecosystems in China, great efforts, such as the reconstruction of forested wetlands, have been devoted to restore the damaged and degraded wetlands to support species diversity and ecosystem services. However, less attention has been given to the diversity and ecological significance of prokaryotes of the domain Archaea compared with prokaryotes of the domain Bacteria during the reconstruction of forested wetlands. Here, the effects of introduced woody plants (Taxodium distichum and Alnus trabeculosa ) on the archaeal community in a freshwater wetland in the Yangtze estuary were investigated. The results showed that Thaumarchaeota obviously predominated at three studied sites in the freshwater wetland, the relative abundance of which decreased with increasing depth, ranging from 93.9% (0–10 cm) to 1.9% (30–40 cm) in mudflats, from 100% (0–10 cm) to 64.8% (30–40 cm) in T. distichum sediment and from 100% (0–10 cm) to 66.7% (40–50 cm) in A. trabeculosa sediment. The abundances of the archaeal amoA gene in woody plant sediments, ranging from 3.27 × 107 to 2.45 × 108 copies g−1 dry soil, were significantly higher than those in bare mudflat, ranging from 9.23 × 106 to 1.35 × 107 copies g−1 dry soil. The archaeal community, which was significantly affected by pH, microbial carbon and SO42− contents according to a canonical correspondence analysis, was significantly altered by plants and soil depth (p < 0.05). These results indicated that the introduction of woody plants stimulates the proliferation of Thaumarchaeota, especially ammonia‐oxidizing archaea, which could be important contributors to the N cycle in forested wetland ecosystems. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
66.
综述:土壤甲烷生成及其营养的研究进展   总被引:3,自引:0,他引:3  
Global warming,as a result of an increase in the mean temperature of the planet,might lead to catastrophic events for humanity.This temperature increase is mainly the result of an increase in the atmospheric greenhouse gases(GHG)concentration.Water vapor,carbon dioxide(CO2),methane(CH4)and nitrous oxide(N2O)are the most important GHG,and human activities,such as industry,livestock and agriculture,contribute to the production of these gases.Methane,at an atmospheric concentration of 1.7μmol mol-1currently,is responsible for 16%of the global warming due to its relatively high global warming potential.Soils play an important role in the CH4cycle as methanotrophy(oxidation of CH4)and methanogenesis(production of CH4)take place in them.Understanding methanogenesis and methanotrophy is essential to establish new agriculture techniques and industrial processes that contribute to a better balance of GHG.The current knowledge of methanogenesis and methanotrophy in soils,anaerobic CH4 oxidation and methanotrophy in extreme environments is also discussed.  相似文献   
67.
Ammonia-oxidizing bacteria (AOB) are key organisms in the N cycle, as they control the first, rate-limiting step of the nitrification process. The question whether current environmental disturbances, such as climate warming and plant diversity losses, select for a particular community structure of AOB and/or influence their activity remains open. The purpose of this research was to study the impact of a 3 °C warming and of plant species richness (S) on microbial activity and diversity in synthesized grasslands, with emphasis on the nitrification process and on the diversity (community structure and richness) of ammonia-oxidizing bacteria (AOB). We measured soil chemical characteristics, basal respiration, potential nitrification and AOB diversity in soils under increasing plant species richness (S = 1, S = 3, S = 9) at ambient and (ambient +3 °C) temperature. Species were drawn from a 9-species pool, belonging to three functional groups: forbs, legumes and grasses. Mixtures comprised species from each of the three functional groups. Warming did not affect AOB diversity and increased potential nitrification at S = 3 only. Under warmed conditions, higher plant species richness resulted in increased potential nitrification rates. AOB richness increased with plant species richness. AOB community structure of monocultures under legumes differed from those under forbs and grasses. Clustering analysis revealed that AOB community structure under legume monocultures and mixtures of three and nine species grouped together. These results indicate that functional group identity rather than plant species richness influenced AOB community structure, especially through the presence of legumes. No clear relationship emerged between AOB richness and potential nitrification whatever plant species richness and temperature treatment. Our findings show a link between aboveground and belowground diversity, namely plant species richness, AOB richness and community structure. AOB richness was not related to soil processes, supporting the idea that increased diversity does not necessarily lead to increased rates of ecosystem processes.  相似文献   
68.
利用araS启动子并在穿梭载体pZC1及pEXA的基础上构建硫化叶菌超表达载体pZC2,成功超表达了带有C端6×His标签序列的DNA双链断裂修复蛋白Mre11,进一步采用共纯化法鉴定到Mre11蛋白的作用配体Rad50,确定上述蛋白在高浓度盐(500mmol/L NaCl)中仍能形成MR复合体,表明该复合物在逆性条件下可能仍保持DNA断链修复的功能。进一步共纯化分析表明,基因组DNA片段是MR复合体形成的必需条件,在缺乏基因组DNA片段的情况下古菌分子伴侣蛋白结合并可能保护Mre11,该表达系统能够有效地应用于鉴定蛋白质的体内作用网络。  相似文献   
69.
Soil archaeal population dynamics at two experimental sites of the same clay-loam type in Ottawa and Woodslee, Ontario, were investigated to determine fertilizer and manure effects following their different long-term crop rotation and fertilization schemes. Phylogenetic analysis of cloned soil archaeal 16S rRNA gene libraries of both sites identified them with group 1.1b of Thaumarchaeota. The gene population dynamics subtly varied in the order of 107 copies g−1 soil when monitored by quantitative real-time PCR during three growing seasons (2007–2009). In Ottawa, where plots were amended with dairy-farm manure, soil thaumarchaeal gene abundance was double of the unamended plots. At the Woodslee N-P-K-fertilized plots, it remained at least 30% fewer than that of the unfertilized ones. These cultivated plots showed soil carbon limitation while the fertilized ones were low in soil pH (ca. 5.5). Surface soils from an unfertilized sod plot and an adjacent deciduous forest had higher total carbon content (C:N ratio of 9 and 11, respectively). Their thaumarchaeal gene abundance varied up to 4.8 × 107 and 7.0 × 107 copies g−1 soil, respectively. The former value was also attained at the manure-amended plots in Ottawa, where the C:N ratio was just below 10. Where soil pH was above 6.0, there was a weak and positive correlation between soil total C and the estimated gene abundance. Such gene population dynamics consistently demonstrated the stimulating and suppressive effects of dairy-farm manure (Ottawa site) and inorganic fertilizers (Woodslee site), respectively, on soil thaumarchaea. At both sites archaeal amoA and 16S rRNA gene abundance were similarly affected. Archaeal amoA gene abundance also outnumbered bacterial amoA abundance, suggesting that ammonia-oxidizing archaea might be dominant in these soils. Only minor crop effects on gene population dynamics were detected.  相似文献   
70.
Paddy field is a major emission source of methane. Methane is the terminal product of anaerobic decomposition of organic matter and generated by methanogenic archaea under flooded conditions in paddy fields. This study aimed to reveal the effect of winter flooding on methanogenic archaeal community structure in paddy fields of Andosols under organic farming. Soil samples were collected from experimental paddy fields in the Field Science Center, Tohoku University, for two years. They were under flooding conditions during winter with organic farming, under non-flooding conditions during winter with organic farming and under non-flooding conditions during winter with conventional farming (non-organic farming). Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis of methanogenic archaeal 16S rRNA gene revealed that the DGGE patterns were nearly the same irrespective of the treatment and sampling times. Twenty-three bands were observed from each treatment and 4, 13 and 6 sequences were closely related to Methanomicrobiales, Methanosarcinales and Methanocellales, respectively. Real-time quantitative PCR analysis indicated that the abundance of methanogenic archaeal 16S rRNA gene and mcrA gene, encoding α subunit of methyl-coenzyme M reductase, was not significantly different among the paddy fields. This study first revealed a methanogenic archaeal community in an Andosol paddy field and showed that the community was not affected by winter flooding under organic farming.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号