首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1087篇
  免费   32篇
  国内免费   88篇
林业   85篇
农学   71篇
基础科学   25篇
  118篇
综合类   447篇
农作物   78篇
水产渔业   33篇
畜牧兽医   217篇
园艺   72篇
植物保护   61篇
  2024年   6篇
  2023年   26篇
  2022年   27篇
  2021年   37篇
  2020年   34篇
  2019年   68篇
  2018年   25篇
  2017年   42篇
  2016年   58篇
  2015年   54篇
  2014年   61篇
  2013年   64篇
  2012年   93篇
  2011年   97篇
  2010年   76篇
  2009年   83篇
  2008年   69篇
  2007年   68篇
  2006年   46篇
  2005年   39篇
  2004年   22篇
  2003年   11篇
  2002年   15篇
  2001年   18篇
  2000年   12篇
  1999年   8篇
  1998年   9篇
  1997年   5篇
  1996年   7篇
  1995年   3篇
  1994年   1篇
  1993年   6篇
  1991年   5篇
  1990年   2篇
  1987年   2篇
  1986年   2篇
  1984年   2篇
  1980年   2篇
  1977年   1篇
  1956年   1篇
排序方式: 共有1207条查询结果,搜索用时 15 毫秒
101.
Abrupt increases in the temperature sensitivity of soil respiration below 0 °C have been interpreted as a change in the dominance of other co-dependent environmental controls, such as the availability of liquid-state water. Yet the relationship between unfrozen water content and soil respiration at sub-zero temperatures has received little attention because of difficulties in measuring unfrozen water contents. Using a recently-developed semi-solid 2H NMR technique the unfrozen water content present in seasonally frozen boreal forest soils was quantified and related to biotic CO2 efflux in laboratory microcosms maintained at temperatures between −0.5 and −8 °C. In both soils the unfrozen water content had an exponential relationship with temperature and was increased by addition of KCl solutions of defined osmotic potential. Approximately 13% unfrozen water was required to release the dependence of soil respiration on unfrozen water content. Depending on the osmotic potential of soil solution, this threshold unfrozen water content was associated with temperatures down to −6 °C; yet if temperature were the predictor of CO2 efflux, then the abrupt increase in the temperature sensitivity of CO2 efflux was associated with −2 °C, except in soils amended with −1500 kPa KCl which did not show any abrupt changes in temperature sensitivity. The KCl-amendments also had the effect of decreasing Q10 values and activation energies (Ea) by factors of 100 and three, respectively, to values comparable with those for soil respiration in unfrozen soil. The disparity between the threshold temperatures and the reductions in Q10 values and activation energies after KCl amendment indicates the significance of unfrozen water availability as an environmental control of equal importance to temperature acting on sub-zero soil respiration. However, this significance was diminished when soils were supplied with abundant labile C (sucrose) and the influences of other environmental controls, allied to the solubility and diffusion of respiratory substrates and gases, are considered to increase.  相似文献   
102.
Grazing intensity may alter the soil respiration rate in grassland ecosystems. The objectives of our study were to (1) determine the influence of grazing intensity on temporal variations in soil respiration of an alpine meadow on the northeastern Tibetan Plateau; and (2) characterise the temperature response of soil respiration under different grazing intensities. Diurnal and seasonal soil respiration rates were measured for two alpine meadow sites with different grazing intensities. The light grazing (LG) meadow site had a grazing intensity of 2.55 sheep ha−1, while the grazing intensity of the heavy grazing (HG) meadow site, 5.35 sheep ha−1, was approximately twice that of the LG site. Soil respiration measurements showed that CO2 efflux was almost twice as great at the LG site as at the HG site during the growing season, but the diurnal and seasonal patterns of soil respiration rate were similar for the two sites. Both exhibited the highest annual soil respiration rate in mid-August and the lowest in January. Soil respiration rate was highly dependent on soil temperature. The Q10 value for annual soil respiration was lower for the HG site (2.75) than for the LG site (3.22). Estimates of net ecosystem CO2 exchange from monthly measurements of biomass and soil respiration revealed that during the period from May 1998 to April 1999, the LG site released 2040 g CO2 m−2 y−1 to the atmosphere, which was about one third more than the 1530 g CO2 m−2 y−1 released at the HG site. The results suggest that (1) grazing intensity alters not only soil respiration rate, but also the temperature dependence of soil CO2 efflux; and (2) soil temperature is the major environmental factor controlling the temporal variation of soil respiration rate in the alpine meadow ecosystem.  相似文献   
103.
Fungal breakdown of plant material rich in lignin and cellulose (i.e. lignocellulose) is of central importance to terrestrial carbon (C) cycling due to the abundance of lignocellulose above and below-ground. Fungal growth on lignocellulose is particularly influential in tropical forests, as woody debris and plant litter contain between 50% and 75% lignocellulose by weight, and can account for 20% of the C stored in these ecosystems. In this study, we evaluated factors affecting fungal growth on a common wood substrate along a wet tropical elevation gradient in the Peruvian Andes. We had three objectives: 1) to determine the temperature sensitivity of fungal growth - i.e. Q10, the factor by which fungal biomass increases given a 10 °C temperature increase; 2) to assess the potential for above-ground fungal colonization and growth on lignocellulose in a wet tropical forest; and 3) to characterize the community composition of fungal wood decomposers across the elevation gradient. We found that fungal growth had a Q10 of 3.93 (95% CI of 2.76-5.61), indicating that fungal biomass accumulation on the wood substrate nearly quadrupled with a 10 °C increase in temperature. The Q10 for fungal growth on wood at our site is higher than Q10 values reported for litter decomposition in other tropical forests. Moreover, we found that above-ground fungal growth on the wood substrate ranged between 37% and 50% of that measured in the soil, suggesting above-ground breakdown of lignocellulose represents an unexplored component of the C cycle in wet tropical forests. Fungal community composition also changed significantly along the elevation gradient, and Ascomycota were the dominant wood decomposers at all elevations. Fungal richness did not change significantly with elevation, directly contrasting with diversity patterns observed for plant and animal taxa across this gradient. Significant variation in fungal community composition across the gradient suggests that the characteristics of fungal decomposer communities are, directly or indirectly, influenced by temperature.  相似文献   
104.
AtHOS10基因对植物冷调节起到重要作用,可以通过控制ABA合成来改变植物的脱水胁迫耐性。本文利用PCR方法从Columbia生态型的拟南芥基因组中扩增出冷调节基因AtHOS10,并插入克隆载体。序列分析表明,克隆片段长3453bp,与目前发表的序列完全一致。将pUC-AtHOS10和pBI-HEM进行酶切重组构建表达载体pBI-AtHOS10,然后将表达载体转化导入农杆菌中,为侵染烟草作准备。  相似文献   
105.
采用静态堆码方式对中药六味地黄丸粉进行辐照杀菌研究。结果表明,在垂直于辐照源轴线方向不同距离处的药品堆积厚度与辐照剂量率之间呈显著负相关( p< 001) ,相关系数 r = - 09947 。辐照工艺技术的改变会不同程度地影响杀菌效果,提高产品总体吸收剂量均匀度,是保证杀菌效果的主要因素。六味地黄丸粉中杂菌的 D10 值为217k Gy 。经100 k Gy 剂量辐照后的六味地黄丸粉,没有发生质量改变,其主要药效成分含量没有变化。  相似文献   
106.
厦门市2001-2002年PM10浓度时间序列变化分析   总被引:6,自引:0,他引:6  
在厦门市环境大气污染物中,PM10是其首要的大气污染物。厦门市大气中的日PM10浓度受天气和气候以及土地利用类型、地表植被覆盖度等诸多因素的共同影响而呈现出一定的周期性,应用时间序列方法对厦门市2001~2002年的PM10浓度进行周期性和趋势性的分析,揭示了厦门市大气环境中PM10浓随时间变化的周期性规律。同时讨论了部分气候因素对PM10浓度年内变化的影响。  相似文献   
107.
Forested mineral soil wetlands (FMSW) store large stocks of soil organic carbon (SOC), but little is known on: (i) whether the quality of SOC stored in these soils (proportion of active versus more resistant SOC compounds) differs from SOC in upland soils; (ii) how the quality of SOC in FMSW varies with mean annual temperature (MAT); and (iii) whether SOC decomposition rates in these environments respond to warming and drying more strongly than those observed in upland soils. To address this substantial knowledge gap, we identified nine FMSW and fifteen paired upland forest sites across three bioregions in North America (sub-alpine in Colorado; north-temperate in Minnesota; and south-temperate in South Carolina) to test the following three hypotheses. First, FMSW store a higher proportion of active SOC compared with upland systems because long anaerobic periods favor the accumulation of labile substrates. Second, in FMSW, SOC quality decreases from cold to warm bioregions because high quality detritus accumulates preferentially at cool sites where decomposition is slow. Finally, decomposition of SOC in FMSW will respond more strongly to warming under aerobic conditions than SOC from upland forest soils because of higher accumulation of active SOC in FMSW. To test these hypotheses, we incubated FMSW and upland forest soils at two constant temperatures (10 and 30 °C) for 525-d under aerobic conditions and constant moisture. In contrast to our first hypothesis, we observed similarly rapid depletion of active SOC compounds at initial stages of incubation across FMSW and upland sites, and across the 525-d incubations we observed overall lower SOC decomposition rates in our FMSW soils. In line with our second hypothesis, and across FMWS and upland soils, we found greater SOC loss in the sub-alpine bioregion than both temperate regions. In contrast to our last hypothesis, we found no difference in the temperature sensitivity (Q10) of SOC decomposition in FMSW and upland forest soils. Critically, total SOC loss (g SOC per g soil) was larger in FMSW because of the large amount of SOC stored in these ecosystems, indicating that despite a lack of difference between FMSW and upland responses, the total release of C from FMSW that could result from global warming may be large.  相似文献   
108.
寒旱区草原流域地表水资源极为匮乏,融雪径流是寒旱区草原流域重要的水源,冰雪融化对河川径流有着十分显著的影响。利用锡林河流域水文站2000—2013年逐日径流数据、锡林浩特气象站2000—2015年逐日平均气温、降雨、雪深数据及MOD10A2积雪产品数据,分析了锡林河流域积雪面积、雪深年际变化特征,气象因子与积雪面积、雪深之间的相关性,以及径流的影响因素。结果表明:研究区积雪面积、雪深年内变化呈单峰型,冬季积雪面积、雪深均达到最大值,春秋次之,夏季最小。在年际变化上,积雪面积、雪深总体呈现增加趋势,其中冬季的积雪面积呈显著性增加。通过研究区气象因子与积雪的相关性表明,在积雪期,气温、风速和日照时数是影响雪深和积雪面积的主要因素,而在融雪期,气温与降水是影响雪深和积雪面积的主要因素。对径流影响因素的分析可得,气温对径流的影响最大,并且积雪面积、雪深与径流之间也存在很强的相关性,说明积雪的变化也会对径流产生影响。研究积雪动态变化及其对径流的影响对寒旱区草原流域水资源管理、农牧业发展和灾害防御具有重要的现实意义。  相似文献   
109.
Soil heterotrophic respiration and its temperature sensitivity are affected by various climatic and environmental factors.However,little is known about the combined effects of concurrent climatic and environmental changes,such as climatic warming,changing precipitation regimes,and increasing nitrogen(N)deposition.Therefore,in this study,we investigated the individual and combined effects of warming,wetting,and N addition on soil heterotrophic respiration and temperature sensitivity.We incubated soils collected from a temperate forest in South Korea for 60 d at two temperature levels(15 and 20℃,representing the annual mean temperature of the study site and 5℃warming,respectively),three moisture levels(10%,28%,and 50%water-filled pore space(WFPS),representing dry,moist,and wet conditions,respectively),and two N levels(without N and with N addition equivalent to 50 kg N ha-1year-1).On day 30,soils were distributed across five different temperatures(10,15,20,25,and 30℃)for 24 h to determine short-term changes in temperature sensitivity(Q10,change in respiration with 10℃increase in temperature)of soil heterotrophic respiration.After completing the incubation on day 60,we measured substrate-induced respiration(SIR)by adding six labile substrates to the three types of treatments.Wetting treatment(increase from 28%to 50%WFPS)reduced SIR by 40.8%(3.77 to 2.23μg CO2-C g-1h-1),but warming(increase from 15 to 20℃)and N addition increased SIR by 47.7%(3.77 to 5.57μg CO2-C g-1h-1)and 42.0%(3.77 to 5.35μg CO2-C g-1h-1),respectively.A combination of any two treatments did not affect SIR,but the combination of three treatments reduced SIR by 42.4%(3.70 to 2.20μg CO2-C g-1h-1).Wetting treatment increased Q10by 25.0%(2.4 to 3.0).However,warming and N addition reduced Q10by 37.5%(2.4 to 1.5)and 16.7%(2.4 to 2.0),respectively.Warming coupled with wetting did not significantly change Q10,while warming coupled with N addition reduced Q10by 33.3%(2.4 to 1.6).The combination of three treatments increased Q10by 12.5%(2.4 to 2.7).Our results demonstrated that among the three factors,soil moisture is the most important one controlling SIR and Q10.The results suggest that the effect of warming on SIR and Q10can be modified significantly by rainfall variability and elevated N availability.Therefore,this study emphasizes that concurrent climatic and environmental changes,such as increasing rainfall variability and N deposition,should be considered when predicting changes induced by warming in soil respiration and its temperature sensitivity.  相似文献   
110.
(pp. 59–66)
In order to understand the detailed soil distribution of a terrace with a diluvial deposit, the method to draw a large-scale soil map was studied in Urausu Town of Sorachi district by combinig soil survey and digital elevation data for a 10 m grid.
The results are summarized as follows:
  • 1) 

    From a soil survey, soils in the research area were classified into 3 soil series groups according to Classification of Cultivated Soils in Japan, Third Approximation, which were Skeletal Terrace Brown Forest Soils, Fine-textured Aquic Brown Forest Soils and Fine-textured Haplic Gray Upland Soils. In addition, Fine-textured Haplic Gray Upland Soils · were classified into 2 categories based on the abundance of gravel in the subsoil.

      相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号