首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2664篇
  免费   45篇
  国内免费   114篇
林业   171篇
农学   190篇
基础科学   414篇
  128篇
综合类   1243篇
农作物   159篇
水产渔业   33篇
畜牧兽医   290篇
园艺   138篇
植物保护   57篇
  2024年   21篇
  2023年   51篇
  2022年   73篇
  2021年   67篇
  2020年   54篇
  2019年   58篇
  2018年   35篇
  2017年   52篇
  2016年   99篇
  2015年   100篇
  2014年   178篇
  2013年   200篇
  2012年   213篇
  2011年   196篇
  2010年   133篇
  2009年   157篇
  2008年   148篇
  2007年   141篇
  2006年   129篇
  2005年   153篇
  2004年   62篇
  2003年   78篇
  2002年   70篇
  2001年   63篇
  2000年   59篇
  1999年   32篇
  1998年   33篇
  1997年   27篇
  1996年   16篇
  1995年   18篇
  1994年   12篇
  1993年   15篇
  1992年   11篇
  1991年   10篇
  1990年   12篇
  1989年   11篇
  1988年   3篇
  1987年   8篇
  1986年   4篇
  1984年   5篇
  1983年   3篇
  1982年   2篇
  1965年   3篇
  1957年   4篇
  1955年   2篇
  1953年   2篇
排序方式: 共有2823条查询结果,搜索用时 156 毫秒
91.
分析了寒地水稻生产中,单位面积穴数不足、均度不够、产量低的主要原因是普通人工插秧行距偏大、穴距过大。论证了缩垄增行是解决这一问题的主要技术措施,其机械行距为24cm,人工插秧实行(19+35cm)的宽窄行。指出在一定范围内,保证群体密度,田间分布均匀是保证质量、提高产量的关键。  相似文献   
92.
<正>一、收割机的使用1、起步。起步要平稳加大油门,使收割机达到额定转速后,再进行切割。遇到障碍物需转弯和倒车时,必须升起割台,减小油门,停止切割。2、.使用一段时间后,紧固前轮、后轮螺母;检查调节全部三角皮带的张紧度;检查调节全部传动链条;当指示灯亮时,清理干式空气滤清器:清理旋转风罩和散热器;检查冷  相似文献   
93.
为解决机器视觉对早期玉米苗带在多环境变量下导航线提取耗时长、准确率低的问题,该研究提出了一种基于中值点Hough变换作物行检测的导航线提取算法。首先,改进了传统的2G-R-B算法,再结合中值滤波、最大类间方差法和形态学操作实现土壤背景与玉米苗带的分割。其次,通过均值法提取玉米苗带特征点,然后采用中值点Hough变换拟合垄间两侧玉米苗列线,最后将检测出的双侧玉米苗列线为导航基准线,利用夹角正切公式提取导航线。试验结果表明:改进的灰度化算法能够正确分割玉米苗带与土壤,处理一幅640×480像素彩色图像平均耗时小于160 ms,基于中值点Hough变换检测玉米苗列再提取导航线的最大误差为0.53°,相比于传统Hough变换时间上平均快62.9 ms,比最小二乘法平均精确度提高了7.12°,在农田早期玉米苗带多环境变量影响因素下导航线提取准确率均达92%以上,具有较强的可靠性和准确性。  相似文献   
94.
气吸滚筒式垄上三行大豆密植排种器设计与参数优化   总被引:2,自引:4,他引:2  
针对1.1 m大垄垄上三行密植大豆栽培技术配套播种机不得不采用单行播种单体前后错排使用,导致播种机结构复杂、通过性差等问题,研究设计了一种与垄上三行大豆密植栽培模式配套的气吸滚筒式大豆排种器。通过理论分析初步确定其主要结构参数并建立充种过程力学模型,运用三因素五水平二次正交旋转中心组合试验方法,以真空度、作业速度、型孔孔径为试验因素,以粒距合格指数、重播指数、漏播指数、各行排量一致性变异系数为目标函数,参照国标GB6973-2005《单粒(精密)播种机试验方法》实施参数优化试验。结果表明:当参数组合为型孔孔径4.5 mm、真空度4.7~5.9 k Pa、作业速度低于9.1 km/h时,该排种器的合格指数≥95%、重播指数≤3%、漏播指数≤2%、各行排量一致性变异系数≤6.5%。研究结果为气吸滚筒式三行大豆排种器的开发奠定了基础。  相似文献   
95.
废旧汽车拆解区土壤重金属分布及Pb、Zn生物有效性分析   总被引:1,自引:0,他引:1  
为了解废旧汽车拆解区土壤重金属污染问题,采集某废旧汽车拆解厂汽车拆解区垂向0~1000 cm深度的土壤样品,对重金属Cu、Zn、Pb、Cr、Ni、Cd、Hg和As元素含量进行检测和污染评价,并对土壤中重金属Pb和Zn的不同形态进行分析研究。研究发现:废旧汽车拆解区表层土壤存在一定程度的Cu、Zn、Pb、Cr、Ni、As污染,其中,Pb、Zn、Cu含量严重超标,呈现Cu、Ni、Pb、Cr、Zn、As多种元素复合污染的特性。同时,拆解区土壤中重金属含量随土壤深度显著下降,但是,Pb和As的污染超标深度可达150 cm。拆解区土壤中可离子交换态的Pb含量最低,土壤pH值对各种形态重金属Pb的控制作用不显著,随着土壤垂向深度的增加,可氧化态和弱酸提取态Pb的比例迅速降低,残渣态Pb的质量分数逐渐提高,Pb的生物有效性下降。土壤pH对可Zn的生物有效性具有显著相关性,弱酸性土壤中以生物有效性高的形态Zn存在,中性土壤中以可还原态和可氧化态Zn为主。  相似文献   
96.
为解决三七收获过程中挖掘阻力过大问题,需深入研究挖掘铲三向阻力变化规律.采用Mohr-Coulomb屈服准则构建土壤有限元模型,建立挖掘铲力学模型,设计挖掘铲参数.运用LS-DYNA获取挖掘铲作用过程中三向阻力与土壤破碎形态开展土槽试验,以此验证仿真结果.结果表明,挖掘铲作业过程中X向阻力最大;Y向阻力与挖掘距离正相关...  相似文献   
97.
单时相双极化ENVISAT ASAR数据水稻识别   总被引:5,自引:4,他引:5  
许多研究已表明合成孔径雷达(SAR)对水稻识别及作物长势监测很有潜力。但是,以往的研究多是采用单极化多时相SAR数据进行水稻监测的。该文本着探讨多极化方式的优势以及降低数据购买成本和减少数据处理量的目的,对单时相双极化的ENVISAT ASAR APP数据的水稻识别能力进行了评价。在水稻生长季节,获取了覆盖江苏洪泽县的ASAR APP时间序列数据。首先,分析比较不同地物的后向散射系数,选择出最能区分水稻与非水稻的单时相数据;然后,采用决策阈值法将水稻信息从图像中提取出来;最后,利用DGPS实测的样地数据对水稻识别进行精度验证。结果表明,利用水稻齐穗期至近成熟期的HH和VV极化的ENVISAT ASAR APP图像能较好区分水稻与非水稻, 水稻识别精度可达86%以上。  相似文献   
98.
基于分区域特征点聚类的秧苗行中心线提取   总被引:4,自引:0,他引:4  
为了准确检测水稻秧苗行中心线,提出了基于分区域特征点聚类的秧苗行中心线提取方法。采用2G-R-B特征因子和Otsu法分割秧苗和背景;通过分区域统计秧苗像素点分布提取秧苗行的候选特征点,利用特征点间近邻关系对特征点进行聚类,确定秧苗行数和各秧苗行的起始点;基于秧苗成行栽植特点引入“趋势线”,利用点到该直线的距离与距离阈值作比较,筛选出远离各行趋势线的点,并将其去除;对筛选后的每一行特征点用最小二乘法进行直线拟合,获取秧苗行中心线。实验结果表明,该算法具有较强的抗噪性能,提取秧苗行中心线的准确率达95.6%,与标准Hough变换和随机Hough变换算法相比,处理一幅分辨率为320像素×237像素的彩色图像平均耗时短,能够实现水田秧苗行中心线的准确提取,可为插秧机自主行走提供可靠的导航信息。  相似文献   
99.
基于自动导航的小麦精准对行深施追肥机设计与试验   总被引:2,自引:0,他引:2  
针对冬小麦返青期地表追施氮肥使氮素挥发导致肥料利用率低的问题,结合目前在小麦追肥过程中缺少深施氮肥作业装备的现状,进行了基于拖拉机自动导航技术实现精准对行深施氮肥的技术研究,设计了小麦精准对行精量深施追肥机。追肥机采用安装有自动导航系统的拖拉机牵引实现精准对行,以RTK-GNSS接收机测取的作业速度为基准,通过液压系统驱动排肥机构工作,双圆盘开沟器开沟深施,采用PID控制排肥轴转速与车辆行驶速度实现实时匹配,达到精量控制追肥量的目的。田间试验结果表明:设置目标追肥量为200 kg/hm2,车辆行驶速度为5 km/h时,追肥机能完成对行深施追肥作业,机具对行作业误差在±6 cm以内,追肥量偏差小于9%,可满足实际生产需求;对照撒肥机表层撒肥作业,每公顷减施氮肥25 kg左右,小麦每公顷增产486.5 kg左右。  相似文献   
100.
喷杆式施药机对行喷雾控制系统设计与试验   总被引:2,自引:0,他引:2  
针对现有大田喷杆式施药机喷雾过程中喷头无法精准对行喷施造成农药浪费的问题,基于机器视觉技术设计了喷杆式施药机对行喷雾控制系统。该系统包括作物行中心线位置提取上位机软件和电动喷杆控制系统,利用工业相机获取作物行RGB图像,采用G-RTG-BT算法及形态学处理实现作物行分割,基于改进的垂直投影法获取作物行中心线,利用坐标系转换实现将作物行中心线位置信息转化为喷杆横向偏移量,并经RS2 3 2串口传输至ATMega1 6控制器,控制推杆电机带动喷杆在滑轨上左右移动,借助位移传感器实时监测喷杆移动距离,以实现作物行追踪和对行喷雾控制。实验室和田间试验表明:改进的作物行中心线提取算法平均耗时12.51ms,喷杆横向偏移量计算误差小于0.44cm;电动喷杆右移最大误差0.3cm,左移最大误差0.5cm;小车速度为0.26m/s时,对倾角为5°、10°、15°模拟作物行的最大对行误差分别为3.22、2.86、2.51cm;小车速度为0.2 4 m/s,最大偏移1 4.0 2 cm时,对田间玉米幼苗的对行喷雾最大误差为4.8 6 cm,为实现作物行追踪和对行喷雾控制提供了一种有效的解决方案。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号