首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4537篇
  免费   271篇
  国内免费   261篇
林业   2305篇
农学   114篇
基础科学   99篇
  612篇
综合类   1662篇
农作物   71篇
水产渔业   11篇
畜牧兽医   40篇
园艺   36篇
植物保护   119篇
  2024年   44篇
  2023年   129篇
  2022年   182篇
  2021年   182篇
  2020年   223篇
  2019年   251篇
  2018年   212篇
  2017年   207篇
  2016年   232篇
  2015年   218篇
  2014年   257篇
  2013年   229篇
  2012年   279篇
  2011年   204篇
  2010年   154篇
  2009年   201篇
  2008年   197篇
  2007年   223篇
  2006年   218篇
  2005年   189篇
  2004年   137篇
  2003年   118篇
  2002年   89篇
  2001年   100篇
  2000年   89篇
  1999年   88篇
  1998年   65篇
  1997年   49篇
  1996年   38篇
  1995年   34篇
  1994年   46篇
  1993年   34篇
  1992年   45篇
  1991年   28篇
  1990年   27篇
  1989年   22篇
  1988年   17篇
  1987年   7篇
  1986年   2篇
  1985年   2篇
  1962年   1篇
排序方式: 共有5069条查询结果,搜索用时 15 毫秒
81.
生物炭配施沼液对淋溶状态下土壤养分的影响   总被引:1,自引:0,他引:1  
为探讨生物炭配施沼液对土壤养分淋失的影响,通过室内土柱试验,采用三因素三水平正交试验方法,系统研究了生物炭添加量、淋溶强度、沼液施加量对土壤养分淋失及土壤养分垂直分布的影响规律。结果表明,土壤养分淋失主要集中在前8次,后期淋失量均维持在较低水平并趋于稳定。各因素对氨态氮、速效磷、速效钾淋失的影响由大到小依次为淋溶强度、生物炭添加量、沼液施加量,而对硝态氮淋失量的影响由大到小依次为生物炭添加量、沼液施加量、淋溶强度。添加生物炭能明显减少养分淋失,且添加生物炭的0~20cm深度土壤的养分明显高于未添加生物炭的20~40cm土壤,各因素对氨态氮、硝态氮、速效钾在土壤中的含量影响差异显著,而对速效磷的影响则无显著差异。  相似文献   
82.
生物炭与化肥互作对土壤含水率与番茄产量的影响   总被引:7,自引:0,他引:7  
为探明生物炭与化肥互作对番茄土壤含水率与及产量的影响,试验设置5个生物炭水平0t/hm~2(B1)、10t/hm~2(B2)、20t/hm~2(B3)、40t/hm~2(B4)、60t/hm~2(B5)和2个化肥水平中肥(F1)和低肥(F2)。结果表明:0~20cm土层土壤含水率均随生物炭施用量增加呈现增大趋势。在番茄生长阶段,0~20cm低炭处理土壤含水率与对照相比增幅在10%以内,高炭处理增幅达40%。20~40cm土壤含水率与0~20cm变化规律恰好相反,与对照相比施炭处理土壤含水率均呈下降趋势。其中B4F1和B4F2含水率最小,为对照的70%。施加生物炭后土壤含水率变化幅度(Ka)和变异程度(Cv)减弱。同一深度土壤随着施炭量增加Ka和Cv均减小。与对照相比较高施炭处理(B4F1、B4F2、B5F1、B5F2)变异系数Cv相对较小。随着番茄生长土壤水分在垂直剖面影响表现为较高施炭量(B4F1、B4F2、B5F1、B5F2)能有效保持耕作层有效水分,与对照相比差异显著。随着施炭量增加番茄产量增幅出现先升高后降低趋势,且均高于对照。B4F1、B4F2、B5F1、B5F2分别增幅46.34%、58.61%、49.63%和39.18%,其中B4F2产量最高。同一施炭不同施肥处理间差异不显著。研究成果可为内蒙古半干旱地区农业生产提供依据。  相似文献   
83.
生物炭对不同坡度坡耕地土壤水动力学参数的影响   总被引:6,自引:0,他引:6  
在3种地形坡度条件下,开展了施加生物炭后连续两年的土壤水动力学效应试验研究,探究不同坡度坡耕地施加生物炭当年和次年对土壤水分常数、土壤水分特征曲线、比水容量、非饱和导水率K(h)和非饱和扩散率D(θ)的影响。结果表明:施用生物炭当年和次年均使土壤田间持水率和饱和含水率增大,且随坡度增加其增率变大,生物炭因子两年内对土壤水分常数的影响显著(P <0. 015),而坡度因子影响不显著(P> 0. 05),即生物炭因子作用更明显;施用生物炭两年内,在各个土壤吸力条件下土壤含水率均增大,土壤持水性增强,且同地形坡度呈正相关关系、同年限呈负相关关系;生物炭在两年内均增大土壤比水容量,使其供水能力加强,最大增量1. 830 207×10-3cm^3/cm^4;地形坡度对K(h)无明显影响,但施加生物炭可使K(h)增大,土壤导水性增强,2016、2017年K(h)最高分别增加239. 61%、164. 04%;施加生物炭可降低D(θ),抑制土壤水分的水平运动,随地形坡度增加抑制效果增强。生物炭施用当年对各土壤水动力学参数的影响大于施用次年。研究结果可为东北黑土区坡耕地农业水土保护和利用提供理论依据。  相似文献   
84.
生物炭对北方寒区农田土壤热性能参数的影响   总被引:5,自引:0,他引:5  
为揭示生物炭对土壤热特性参数的影响规律,以施加不同生物炭的北方寒区农田土壤为研究对象,设置土壤含水率水平分别为0%、8%、16%、24%、32%、40%,利用ISOMET2114型热性能分析仪,测定土壤在15~-15℃温度范围内导热率、热扩散率和体积热容量的变异特征,探究生物炭调控作用下土壤热特性参数对水热环境的响应机理。研究结果表明:在冻结与非冻结状态下,随土壤含水率增加,土壤导热率、体积热容量和热扩散率均表现出增大趋势,在3℃条件下,生物炭含量为0 t/hm2、含水率为24%和32%时,土壤导热率相对于含水率为16%时分别增加0. 141 4、0. 580 5 W/(m·K)。随生物炭含量增加,土壤导热率和热扩散率呈降低趋势,体积热容量在非冻结情况下呈降低趋势,在冻结情况下则呈增大趋势,在-3℃条件下,含水率为32%、生物炭含量为4 t/hm2和6 t/hm2时,土壤体积热容量相对于0 t/hm2水平分别增加0. 16、0. 20 J/(cm3·K)。土壤导热率与含水率呈对数函数关系,土壤体积热容量与含水率呈线性函数关系,土壤热扩散率与含水率呈二次函数关系。本研究结果可为准确描述北方寒区农田土壤热性能和生物炭改良土壤技术提供理论依据。  相似文献   
85.
【目的】提高微咸水灌溉效率并降低土壤盐渍化风险。【方法】以冬小麦为研究对象,设计避雨条件下不同微咸水-生物炭处理(CK,淡水;B0,5 g/L微咸水;B15,5 g/L微咸水及15 t/hm2生物炭;B30,5 g/L微咸水及30 t/hm2生物炭;B45,5 g/L微咸水及45 t/hm2生物炭)的田间试验,探讨了微咸水灌溉下生物炭添加量对土壤特性和冬小麦花后干物质积累及转运的影响机制。【结果】生物炭添加后土壤表层(0~20 cm)体积质量降低了2.27%~8.33%,总孔隙度增加了4.52%~13.47%,有机质量增加了30.02%~111.12%,土壤表层(0~20 cm)及主根区(0~40 cm)钠吸附比降低了23.88%~33.27%和22.34%~30.80%;15 t/hm2能够促进盐分淋洗,降低了微咸水灌溉下土壤含盐量,然而高剂量时将加剧盐分累积。单独微咸水灌溉下冬小麦生长受抑,最终产量下降了12.04%。生物炭能够缓解盐胁迫下叶片早衰,促进光合作用能力,并增加花前干物质转运量及花后干物质积累量,进而获取了更高的籽粒质量和收获指数。B15、B30、B45处理的最终产量较B0处理分别增加9.18%、7.73%、2.74%。【结论】15 t/hm2添加量的生物炭效果最佳,可促进微咸水资源的农业利用。  相似文献   
86.
生物炭对草甸黑土物理性质及雨后水分动态变化的影响   总被引:3,自引:0,他引:3  
为探明生物炭对草甸黑土物理性质及雨后水分动态变化的影响,在大豆全生育期生长条件下,研究了东北黑土区草甸黑土5种生物炭添加量(0、25、50、75、100 t/hm2)下土壤物理性质(包括:土壤水分特征曲线、土壤含水率常数、土壤水分扩散率)和单次降雨土壤含水率变化特征,分析了生物炭对黑土区草甸黑土耕层土壤持水能力及雨后水分动态变化的影响。结果表明,施用生物炭能降低土壤残余含水率,增加土壤饱和含水率和田间持水量,其中对残余含水率的影响最显著,100 t/hm~2生物炭处理使残余含水率最多降低27.6%;施用生物炭能明显降低土壤水分扩散率,随生物炭添加量的增加依次比对照组减少34.8%、37.5%、71.4%和58.9%;在单次降雨过程中,施用生物炭能减小土壤含水率的变化幅度,使土壤含水率在降雨之后更快地由迅速下降期进入缓慢下降期,并能明显提高缓慢下降期对应的土壤含水率;施用生物炭可以提高大豆产量,以75 t/hm~2生物炭处理最高。研究结果可为黑土区农业水土资源高效利用与保护提供理论依据。  相似文献   
87.
秸秆生物炭对玉米农田温室气体排放的影响   总被引:7,自引:0,他引:7  
通过大田试验,采用静态暗箱-气象色谱法研究玉米农田不施生物炭(C0),施生物炭分别为15 t/hm2(C15)、30 t/hm2(C30)和45 t/hm2(C45)后温室气体(CO_2、CH_4和N_2O)的排放特征,并估算CH_4和N_2O的综合增温潜势(GWP)及排放强度(GHGI)。结果表明:添加生物炭显著降低CO_2和N_2O的季节累积排放总量,与C0处理相比,CO_2最大降幅为24.6%(C15),N_2O最大降幅为110.35%(C45),且其随着生物炭施用量的增加而降低;CH_4的季节累积排放总量由小到大依次为:C15、C30、C0、C45,其中,C15处理较C0处理降低幅度最大为259.62%,添加生物炭同时也降低CH_4和N_2O的综合增温潜势(GWP)及排放强度(GHGI),处理C15、C30和C45的GWP值较对照C0分别降低88.2%、123.2%和109.9%,GHGI分别降低88.86%、121.60%和100.03%。施用适量的生物炭可以有效增加玉米产量,处理C15、C30和C45的增幅分别为6.28%、7.27%和1.69%。处理C30显著降低CH_4和N_2O的综合增温潜势及其排放强度,并且产量的增幅最大。因此,在当前玉米农田管理措施下,生物炭施用量为30 t/hm2时可实现玉米增产和固碳减排的目标。  相似文献   
88.
Summary The rate and degree of fragmentation of leaf litter by Julus scandinavius in a Sycamore/ash wood in Cheshire, England, were determined from the ratio of surface area of the leaf diet consumed by all individuals of each instar during the period when they were present on the surface area of leaf materials in the faecal pellets. Generally, the rate of fragmentation of leaf litter decreased in the series young instars sexed immature instars mature instars. The total degree of increase in the fragmentation of leaf litter by the population was 72×106.  相似文献   
89.
针对设施土壤中长期大量施用有机肥可能造成的土壤磷素过度积累及易流失等问题,本研究拟通过施用生物炭增加土壤中磷的吸附,从而减少磷流失。此外,目前关于在设施土壤中连续施用生物炭对土壤磷素形态和有效性的影响作用尚不清楚。为此,在辣椒大棚中通过长期定位试验,研究连续4茬施用生物炭对土壤有效磷、不同形态磷、磷吸附及释放的影响。结果表明:在每公顷施用15 t猪粪稻草有机肥基础上施用生物炭可显著增加土壤有机碳含量和土壤pH,并显著改变了土壤磷各组分含量,显著增加了NaHCO3 Pi、NaHCO3 Po、Fe/Al-Pi和Ca-Pi含量,且显著降低了Ca-Po含量。此外,连续4茬施用生物炭还增加了土壤对磷的吸附,从而降低土壤磷的释放。本研究结果说明,在设施土壤中长期大量施用有机肥下结合施用生物炭在保持土壤有效磷供应下可提高土壤磷的吸附,从而降低土壤磷素的流失风险。  相似文献   
90.
双孢菇菌糠生物炭吸附Pb2+机制及其环境应用潜力   总被引:1,自引:0,他引:1  
为了有效去除水体中的重金属Pb~(2+),开发利用菌糠生物炭吸附剂,以双孢菇菌糠(MS)为原料,在350、550、750℃下限氧热解制备生物炭(MS350、MS550、MS750),并利用FTIR、XRD等技术对吸附前后的生物炭样品进行表征;通过批量吸附、定性和定量分析以及萃取实验,研究菌糠生物炭对Pb~(2+)的吸附特性、机理及吸附后样品的稳定性能。结果表明:随着热解温度的升高,样品的产率降低,pH值升高,芳香性增强。准二级动力学方程和Freundlich模型能够较好地符合MS350、MS550的吸附过程,而MS750以准二级动力学和Langmuir模型较好符合。相较于MS350和MS550,MS750吸附性能最好,经Langmuir模型拟合,MS750的最大吸附量为266.23 mg·g-1。溶液pH值影响生物炭的吸附性能,在pH值2.0~7.0的范围内,吸附量随溶液pH值升高而增加。机理分析表明:吸附机理包括矿物沉淀、阳离子交换、含氧官能团络合以及π电子配位;其中,矿物沉淀(CO_3~(2-), SO_4~(2-))是主要的吸附机制,其贡献率随热解温度升高而增加。萃取实验表明:经吸附后,3种生物炭上的Pb~(2+)均以酸溶态铅和非生物利用态铅为主,说明吸附后的铅具有较好稳定性能,两种形态的铅占总吸附量的大小顺序为:MS750(98.65%)MS550(95.91%)MS350(86.51%)。综合分析表明,MS750较其他温度生物炭不仅吸附性能更好,而且吸附后稳定性更强,故在环境应用上具有更大的潜力。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号