全文获取类型
收费全文 | 2607篇 |
免费 | 107篇 |
国内免费 | 253篇 |
专业分类
林业 | 65篇 |
农学 | 245篇 |
基础科学 | 48篇 |
1430篇 | |
综合类 | 624篇 |
农作物 | 227篇 |
水产渔业 | 61篇 |
畜牧兽医 | 74篇 |
园艺 | 62篇 |
植物保护 | 131篇 |
出版年
2024年 | 12篇 |
2023年 | 35篇 |
2022年 | 57篇 |
2021年 | 71篇 |
2020年 | 95篇 |
2019年 | 108篇 |
2018年 | 98篇 |
2017年 | 177篇 |
2016年 | 159篇 |
2015年 | 100篇 |
2014年 | 128篇 |
2013年 | 399篇 |
2012年 | 251篇 |
2011年 | 140篇 |
2010年 | 145篇 |
2009年 | 105篇 |
2008年 | 87篇 |
2007年 | 105篇 |
2006年 | 102篇 |
2005年 | 75篇 |
2004年 | 71篇 |
2003年 | 44篇 |
2002年 | 41篇 |
2001年 | 43篇 |
2000年 | 33篇 |
1999年 | 28篇 |
1998年 | 42篇 |
1997年 | 21篇 |
1996年 | 34篇 |
1995年 | 19篇 |
1994年 | 24篇 |
1993年 | 26篇 |
1992年 | 25篇 |
1991年 | 15篇 |
1990年 | 10篇 |
1989年 | 12篇 |
1988年 | 8篇 |
1987年 | 10篇 |
1986年 | 3篇 |
1985年 | 3篇 |
1984年 | 1篇 |
1981年 | 2篇 |
1977年 | 1篇 |
1955年 | 2篇 |
排序方式: 共有2967条查询结果,搜索用时 15 毫秒
131.
Nitrate‐N uptake from soil depends on root growth and uptake activity. However, under field conditions N‐uptake activity is difficult to estimate from soil‐N depletion due to different loss pathways. We modified the current mesh‐bag method to estimate nitrate‐N‐uptake activity and root growth of two oilseed‐rape cultivars differing in N‐uptake efficiency. N‐efficient cultivar (cv.) ‘Apex' and N‐inefficient cv. ‘Capitol' were grown in a field experiment on a silty clayey gleyic fluvisol near Göttingen, northern Germany, and fertilized with 0 (N0) and 227 (N227) kg N ha–1. In February 2002, PVC tubes with a diameter of 50 mm were installed between plant rows at 0–0.3 and 0–0.6 m soil depth with an angle of 45°. At the beginning of shooting, beginning of flowering, and at seed filling, the PVC tubes were substituted by PVC tubes (compartments) of the same diameter, but with an open window at the upper side either at a soil depth of 0–0.3 or 0.3–0.6 m allowing roots to grow into the tubes. Anion‐exchange resin at the bottom of the compartment allowed estimation of nitrate leaching. The compartments were then filled with root‐free soil which was amended with or without 90 mg N (kg soil)–1. The newly developed roots and nitrate‐N depletion were estimated in the compartments after the installing period (21 d at shooting stage and 16 d both at flowering and grain‐filling stages). Nitrate‐N depletion was estimated from the difference between NO ‐N contents of compartments containing roots and control compartments (windows closed with a membrane) containing no roots. The amount of nitrate leached from the compartments was quantified from the resin and has been taken into consideration in the calculation of the N depletion. The amount of N depleted from the compartments significantly correlated with root‐length density. Suboptimal N application to the crop reduced total biomass and seed‐yield formation substantially (24% and 38% for ‘Apex’ and ‘Capitol’, respectively). At the shooting stage, there were no differences in root production and N depletion from the compartments by the two cultivars between N0 and N227. But at flowering and seed‐filling stages, higher root production and accordingly higher N depletion was observed at N0 compared to N227. Towards later growth stages, the newly developed roots were characterized by a reduction of root diameter and a shift towards the deeper soil layer (0.3–0.6m). At low but not at high N supply, the N‐efficient cv. ‘Apex’ exhibited higher root growth and accordingly depleted nitrate‐N more effectively than the N‐inefficient cv. ‘Capitol’, especially during the reproductive growth phase. The calculated nitrate‐N‐uptake rate per unit root length was maximal at flowering (for the low N supply) but showed no difference between the two cultivars. This indicated that the higher N‐uptake efficiency of cv. ‘Apex’ was due to higher root growth rather than higher uptake per unit of root length. 相似文献
132.
为阐明杂种一代在氮素吸收方面的优势,研究了不同氮效率茄子基因型及其杂种 F1的氮素吸收特性。试验以3个典型氮效率的茄子基因型及其F1代为材料,研究其在正常供氮和低氮胁迫条件下的根系体积、根系干重、氮素吸收总量、根系活力、硝酸还原酶活性及谷氨酰胺合成酶活性。结果表明,与高氮低效-低氮低效基因型L相比,氮高效基因型H1、H2的单株根系体积、根系干重、根系活力以及氮素吸收总量均较大; 且具有较高的硝酸还原酶与谷氨酰胺合成酶活性。三个杂交组合F1-1(L×H1)、F1-2(L×H2)和F1-3(H1×H2)的单株根系体积、根系干重、根系活力、硝酸还原酶活性、谷氨酰胺合成酶活性以及氮素吸收总量的中亲优势(Hm)和超亲优势(Hp)多为正向优势; 其中,组合F1-3杂种优势最为明显。利用杂种在氮素吸收方面的优势,对于改善植株体内的氮代谢水平进而提高氮效率具有重要意义。 相似文献
133.
M.?AshrafEmail author T.?Mahmood F.?Azam R.?M.?Qureshi 《Biology and Fertility of Soils》2004,40(2):147-152
The beneficial role of green manures in rice production is generally ascribed to their potential of supplying plant nutrients, particularly nitrogen (N). However, the mechanisms through which green manures enhance the crop productivity are poorly understood. Pot experiments were conducted using a 15N-tracer technique: (1) to compare the biomass production potential of sesbania (Sesbania aculeata Pers.) and maize (Zea mays L.) as green manuring crops for lowland rice and (2) to compare the effect of the two types of green manure and inorganic N on the dry matter accumulation and N uptake by two rice (Oryza sativa L.) cultivars, viz. IR-6 and Bas-370. Although maize produced three times higher shoot biomass compared with sesbania, the latter showed higher N concentration; and thus the total N yield was similar in the two types of plants. Applying the shoot material of the two plants to flooded rice significantly enhanced the dry matter yield and N uptake by the two rice cultivars, the positive effects generally being more pronounced with sesbania than with maize amendment. The difference in the growth-promoting potential of the two plant residues was related more to an increased uptake of the native soil N rather than to their direct role as a source of plant-available N. A positive added nitrogen interaction (ANI) was observed due to both plant residues, the effect was much more pronounced with the application of sesbania than with maize residues. In both rice cultivars, inorganic N also caused a substantial ANI, particularly at higher application rate. Losses from the applied N were 2–3 times lower from sesbania, compared with maize treatment. Green manuring with sesbania also caused much lower N losses than the inorganic N applied at equivalent or higher rates. The overall benefit of green manuring to rice plants was higher than inorganic N applied at comparable rates. The two rice cultivars differed in their response to green manuring, IR-6 generally being more responsive than Bas-370. 相似文献
134.
改进施氮运筹对水稻产量和氮素吸收利用的影响 总被引:15,自引:1,他引:15
【目的】秸秆还田不仅可改良土壤和增加土壤有机质,还能提高作物产量和品质。但秸秆还田后,土壤有机酸积累和微生物固氮,抑制水稻前期生长。在长江流域稻麦两熟地区,当地农户往往通过增加施氮量来解决秸秆还田的负效应,造成肥料浪费和氮污染。因此,探索研究秸秆还田条件下水稻优化的氮肥运筹措施,阐明水稻产量形成和氮素吸收与利用对氮素响应特征,对于提高水稻产量和氮素利用效率具有重要意义。【方法】2012 2013年,以超级粳稻武运粳24号和宁粳3号为材料,在江苏省兴化市进行大田试验,在秸秆全量还田条件下,设置常规施氮300 kg/hm2(N1)、增加施氮量345 kg/hm2(N2)和常规施氮运筹(CFP,基肥∶分蘖肥∶穗肥=3∶3∶4)、改进施氮运筹(MFP,基肥∶分蘖肥∶穗肥=4∶3∶3),以无氮处理为对照,研究施氮量和氮肥运筹措施对水稻产量及其产量构成、干物质积累、氮素积累、氮素吸收速率和氮肥利用效率的影响。【结果】随着氮肥水平提高,水稻穗数显著增加,每穗粒数、结实率和千粒重下降,最终增产不显著。与常规施氮运筹比较,改进氮肥运筹显著增加穗数,显著提高群体颖花量并增产,在N1水平下,改进施氮运筹增产幅度为5.18%7.10%,高于N2水平的2.70%4.29%。随着施氮量增加,水稻分蘖中期、拔节期、移栽期至分蘖中期、分蘖中期至拔节期干物质积累量、氮素积累量显著增加,最终成熟期干物质积累量和氮素积累量有所增加,但差异不显著,而氮肥农学利用率、氮肥吸收利用率和氮偏肥生产力显著下降。与常规氮运筹处理相比,改进氮运筹显著增加水稻移栽期至分蘖中期干物质积累量、氮素积累量和氮素吸收速率,增加成熟期干物质积累量和氮素积累量,提高氮肥农学利用率、氮肥吸收利用率、氮肥生理利用率和氮偏肥生产力,在N1水平下成熟期干物质积累量和氮素积累量分别增加6.52%和5.55%,氮肥农学利用率、氮肥吸收利用率、氮肥生理利用率和氮偏肥生产力分别提高13.36%、8.55%、4.44%和5.29%,差异均达显著水平。【结论】秸秆全量还田条件下,增加氮肥用量水稻增产不显著,且氮肥利用效率低。不增加氮肥用量,通过适当提高基肥比例(基肥∶分蘖肥∶穗肥=4∶3∶3),可实现提高水稻产量、干物质积累量、氮素积累量和氮肥利用效率。 相似文献
135.
根区局部灌溉和氮、钾水平对玉米干物质积累和水肥利用的影响 总被引:8,自引:0,他引:8
在玉米某一生育阶段实施根区局部灌溉,探索其水肥供应模式。通过盆栽试验,研究了在不同氮(N)、钾(K)水平下,苗期拔节期和苗期抽雄期分根区交替灌溉和固定部分根区灌溉对玉米干物质积累、水分利用和N、K吸收的影响。结果表明,与常规灌溉相比,苗期拔节期根区局部灌溉总干物质质量降低不明显或略有增加,而水分利用效率明显增加,且不影响玉米对N、K吸收量; 而苗期抽雄期根区局部灌溉虽降低耗水量31.0%38.4%,但明显降低玉米总干物质质量和N、K吸收量。相同灌溉方式下,中等 N、K水平(N和K2O均为 0.12 g/kg)处理的总干物质质量、地上部和总N、K吸收量比低N、K水平(N和K2O均为0.08 g/kg)的明显增加; 而高N、K水平(N和K2O 均为0.16 g/kg)与中等N、K水平无明显差异。说明适宜N、K水平时在玉米苗期拔节期进行根区局部灌溉效果较好。 相似文献
136.
Summary We studied the effect of three successive cuttings on N uptake and fixation and N distribution in Leucaena leucocephala. Two isolines, uninoculated or inoculated with three different Rhizobium strains, were grown for 36 weeks and cut every 12 weeks. The soil was labelled with 50 ppm KNO3 enriched with 10 atom % 15N excess soon after the first cutting. Except for the atom % 15N excess in branches of K28 at the second cutting, both the L. leucocephala isolines showed similar patterns of total N, fixed N2, and N from fertilizer distribution in different parts of the plant at each cutting. The Rhizobium strain did not influence the partitioning of 15N among the different plant parts. Significant differences in 15N enrichment occurred in different parts. Live nodules of both isolines showed the lowest atom % 15N excess values (0.087), followed by leaves (0.492), branches (0.552), stems (0.591), and roots (0.857). The roots contained about 60% of the total plant N and about 70% of the total N derived from fertilizer over the successive cuttings. The total N2 fixed in the roots was about 60% of that fixed in the whole plant, while the shoots contained only 20% of the fixed N2. We conclude that N reserves in roots and nodules constitute another N source that must be taken into account when estimating fixed N2 or the N balance after pruning or cutting plants. 15N enrichment declined up to about fivefold in the reference and the N2-fixing plants over 24 weeks following the 15N application. The proportion and the amounts of N derived from fertilizer decreased, while the amount derived from N2 fixation increased with time although its proportion remained constant. 相似文献
137.
供试菌株Alcaligenes faecalis A15,Enterobacter cloacae EnSs.E·cl-oacae E26,Klebsiella planticola DWUL2.K·oxytoca NG13和Pseudomonassacharophila均能还原2,3,5-氯化三苯基四氮唑(TTC),说明它们含有吸氢酶。以Rhizobium japonicum的hup基因为探针进行杂交的结果表明。除E·oloacae E26和K·oxytoca NG13外,其它菌株的DNA与hup探针具有同源性。A·faecalis A15 hup基因位于染色体上‘E·cloacae EnSs则位于较大的一个质粒上。A·faecalis A15和E·Cloacae EnSs的nif基因与hup基因位于同一复制子上。hup基因不具必然的保守性,因此异源hup基因探针不一定都适宜于探测hup基因。 相似文献
138.
The anionic nature and high cation exchange capacity (CEC) of clinoptilolite zeolite can be exploited to reduce ammonia (NH3) loss from urea and to improve soil chemical properties to increase nutrient utilization efficiency in lowland rice cultivation. A closed-dynamic airflow system was used to determine NH3 loss from treatments (20, 40, and 60 g clinoptilolite zeolite pot?1). Seed germination study was conducted to evaluate the effects of clinoptilolite zeolite on rice seed germination. A pot study was conducted to determine the effects of clinoptilolite zeolite on rice plant growth variables, nutrient uptake, nutrient recovery, and soil chemical properties. Standard procedures were used to determine NH3 loss, rice plant height, number of leaves, number of tillers, dry matter production, nutrient uptake, nutrient recovery, and soil chemical properties. Application of clinoptilolite zeolite (15%) increased shoot elongation of seedlings and significantly reduced NH3 loss (up to 26% with 60 g zeolite pot?1), and increased number of leaves, total dry matter, nutrient uptake, nutrient recovery, soil pH, CEC, and exchangeable Na+. Amending acid soils with clinoptilolite zeolite can significantly minimize NH3 loss and improve rice plant growth variables, nutrient uptake, nutrient recovery, and soil chemical properties. These findings are being validated in our ongoing field trials. 相似文献
139.
The secretion of O2 by rice roots results in aerobic conditions in the rhizoshere compared to the bulk flooded soil. The effect of this phenomenon on the adsorption/desorption behavior and on the availability of phosphorus (P) in a flooded soil was investigated in a model experiment. An experimental set‐up was developed that imitates both O2 release and P uptake by the rice root. The results showed that O2 secretion significantly reduced P adsorption/retention and increased P desorption/release in the “rhizosphere” soil, compared to the anaerobic bulk soil. The P uptake by an anion exchange resin from both unfertilized and P‐amended soil was significantly increased. The results confirm that the O2 secretion is an important mechanism to enhance P availability and P uptake of rice under flooded conditions, where the “physico‐chemical” availability of P in the anaerobic bulk soil is strongly reduced. The decrease of P availability in the P‐amended flooded bulk soil was mainly associated with the almost complete transformation of the precedingly enriched Al‐P fraction into Fe‐bound P with extremely low desorption/release characteristics during the subsequent flooding. 相似文献
140.