首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   10篇
  国内免费   4篇
林业   2篇
  1篇
综合类   22篇
畜牧兽医   1篇
植物保护   89篇
  2023年   3篇
  2022年   1篇
  2021年   1篇
  2020年   4篇
  2019年   2篇
  2018年   5篇
  2017年   1篇
  2016年   4篇
  2015年   3篇
  2014年   5篇
  2013年   3篇
  2012年   14篇
  2011年   10篇
  2010年   9篇
  2009年   8篇
  2008年   3篇
  2007年   6篇
  2006年   14篇
  2005年   4篇
  2004年   4篇
  2003年   3篇
  2002年   4篇
  2000年   2篇
  1998年   1篇
  1996年   1篇
排序方式: 共有115条查询结果,搜索用时 765 毫秒
21.
22.
BACKGROUND: The onion thrips, Thrips tabaci Lindeman, is a major pest of several crop plants in the genus Allium, such as onions, garlic and chives. In Israel, these crops are grown in open fields and in protected housing. This thrips is usually controlled by the application of chemical insecticides. In recent years, spinosad, emamectin benzoate and carbosulfan have been the major insecticides used for the control of the onion thrips. In the last 4 years, growers of chives and green onion from several regions of Israel have reported a significant decrease in the efficacy of insecticides used to control the onion thrips. RESULTS: The susceptibility of 14 populations of the onion thrips, collected mainly from chives between the years 2007 and 2011, to spinosad, emamectin benzoate and carbosulfan was tested using a laboratory bioassay. The majority of the populations showed significant levels of resistance to at least one of the insecticides. LC50 values calculated for two of the studied populations showed that the resistance factor for spinosad compared with the susceptible population is 21 393, for carbosulfan 54 and for emamectin benzoate 36. Only two populations, collected from organic farms, were susceptible to the insecticides tested. CONCLUSION: This is the first report of a high resistance level to spinosad, the major insecticide used to control the onion thrips. Resistance cases to spinosad were associated with failures to control the pest. Populations resistant to spinosad also had partial or complete resistance to other insecticides used for controlling the onion thrips. Copyright © 2012 Society of Chemical Industry  相似文献   
23.
Susceptibility to spinosad of western flower thrips (WFT), Frankliniella occidentalis (Pergande), from south-eastern Spain was determined. LC(50) values of the field populations without previous exposure to spinosad collected in Murcia in 2001 and 2002 ranged from 0.005 to 0.077 mg L(-1). The populations collected in Almeria in 2003 in greenhouses were resistant to spinosad (LC(50) > 54 mg L(-1)) compared with the authors' highly susceptible laboratory strain. The highly sensitive laboratory strain leads to very high resistance ratios for the field populations (>13 500), but these ratios do not necessarily mean resistance problems and control failures (spinosad field rate 90-120 mg L(-1)). The populations collected in Murcia from some greenhouses in 2004 were also resistant to spinosad (RF > 3682). Spinosad overuse, with more than ten applications per crop, produced these resistant populations in some greenhouses. Spinosad showed no cross-resistance to acrinathrin, formetanate or methiocarb in laboratory strains selected for resistance towards each insecticide. Correlation analysis indicated no cross-resistance among spinosad and the other three insecticides in 13 field populations and in nine laboratory strains. The synergists piperonyl butoxide (PBO), S,S,S-tributyl phosphorotrithioate (DEF) and diethyl maleate (DEM) did not enhance the toxicity of spinosad to the resistant strains, indicating that metabolic-mediated detoxification was not responsible for the spinosad resistance. These findings suggest that rotation with spinosad may be an effective resistance management strategy.  相似文献   
24.
BACKGROUND: The immediate lethality caused by spinosad has been widely studied on Spodoptera exigua (Hübner). However, long‐term effects can also provide valuable information on insecticide toxic action. Here, the persistence of spinosad on Capsicum annuum L. foliage and the lethal and sublethal effects of greenhouse‐aged foliar residues of this insecticide on third instars of S. exigua are reported. RESULTS: Foliage was collected at 0, 3, 5, 10, 20, 30, 40 and 50 days after application, and spinosad residues were measured. Residues decreased over time according to first‐order kinetics. The average rate constant and half‐life of disappearance were 4.44 × 10?3 and 156 days and 5.80 × 10?3 and 120 days for 60 and 120 mg L?1 respectively. Larval mortality gradually decreased, corresponding to the residues, but was still appreciable (35 and 65% for 60 and 120 mg L?1 respectively) when the larvae were fed with foliage collected 50 days after treatment. Subsequently, pupal development was reduced and varied between 20 and 60% and between 21 and 41% for 60 and 120 mg L?1, respectively, in all ages of leaf residues that were bioassayed. At all time points, the consumption rate by the larvae was reduced between 62 and 84% for both concentrations that were bioassayed. CONCLUSION: It is concluded that, under the present greenhouse conditions, the degradation of spinosad was slower than that reported by other authors in the field, and, because of that, its residues could cause lethal and sublethal effects to S. exigua larvae. Copyright © 2011 Society of Chemical Industry  相似文献   
25.
It was demonstrated that neonates of the codling moth,Cydia pomonella (L.), feed on ‘Red Delicious’ apple leaves and successfully molt to the second instar. Next, using a non-choice bioassay, we targeted codling moth neonates feeding on apple leaves, with standard concentrations of a culinary taste enhancer, monosodium glutamate (MSG), and Success®, which contains 22.8% spinosad as its active ingredient. The addition of 25 ppm MSG increased feeding by 20–30%. Stimulatory properties of MSG were preserved in the presence of 12.5 ppm Success, and mortality from a 12.5 ppm Success + 25 ppm MSG combination increased by factors of 3.1–1.6 compared with Success alone. In a field experiment without rain, MSG maintained its stimulatory properties for 24 h, increasing feeding by 37%. Consistently, without rain, MSG increased the toxicity of Success in the field by a factor of × 3.5. However, the stimulatory properties of MSG dropped to 19% with 4.3 mm of rain, and to zero with 9.6 mm of rain. Increased Success toxicity by MSG was reduced to × 1.6 with 4.3 mm of rain, and dropped to zero after 9.6 mm of rain. It is concluded that MSG seems to be a promising feeding stimulant, enhancing the toxic properties of Success which itself is a good candidate for codling moth control. However, field persistence of MSG needs to be improved, either by formulating the Success + MSG combination into some field-stable matrix, or by employing a sparingly water-soluble substance mimicking MSG’s action as a feeding stimulant in codling moth neonates.  相似文献   
26.
Susceptibility to spinosad (Success®/Tracer®) of beet armyworm (Spodoptera exigua) from the southern USA and Southeast Asia was determined through exposure of second‐ and third‐instar larvae to dipped cotton leaves. LC50 estimates of susceptibility of second‐ and third‐instar larvae of field populations ranged from 0.279 to 6.14 and 0.589 to 14.0 mg spinosad litre−1, respectively. A Thailand population was 22‐ and 24‐fold less susceptible than the six other US field populations evaluated, and 85‐ and 58‐fold less susceptible than a reference laboratory population, respectively. From these results, we initiated experiments to test the hypothesis that the Thailand population was resistant to spinosad. F1 crosses between the resistant Thailand population and a susceptible reference strain yielded individuals that were 22‐fold less sensitive to spinosad than the susceptible parent. This same resistant strain exhibited significantly greater survivorship on plants treated with spinosad in the field. Lastly, selection of an Arizona population resulted in a significant reduction in susceptibility to spinosad, further substantiating the hypothesis of a genetic basis for resistance to spinosad. These findings indicate a vulnerability of this new insecticide to resistance development in beet armyworm and should serve as a warning against excessive use of it. © 2000 Society of Chemical Industry  相似文献   
27.
28.
29.
李秀霞  张锦  高全  操海群 《植物保护》2020,46(6):276-278
草地贪夜蛾是一种为害玉米?高粱和小麦等多种作物的世界性重要害虫?于2019年1月从云南入侵我国并迅速扩散到大多数省份?当前我国防控草地贪夜蛾的主要手段是喷施化学杀虫剂?为筛选具有增效作用的杀虫剂混剂, 延缓草地贪夜蛾抗药性发展, 本文研究了多杀霉素与茚虫威两种不同作用机制的杀虫剂混配对草地贪夜蛾的增效作用?采用饲料混毒法测得多杀霉素与茚虫威对草地贪夜蛾的LD50分别为5.41 μg/g和17.74 μg/g?多杀霉素和茚虫威两种药剂按不同质量比混配对草地贪夜蛾3龄幼虫均表现为相加或者增效作用, 其中质量比为1∶9时增效作用最显著, 共毒系数为147.3?  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号