首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45088篇
  免费   2752篇
  国内免费   3537篇
林业   2964篇
农学   2271篇
基础科学   2292篇
  22149篇
综合类   15294篇
农作物   1124篇
水产渔业   51篇
畜牧兽医   1584篇
园艺   523篇
植物保护   3125篇
  2024年   437篇
  2023年   1243篇
  2022年   1657篇
  2021年   1683篇
  2020年   1733篇
  2019年   1937篇
  2018年   1594篇
  2017年   2387篇
  2016年   2821篇
  2015年   1921篇
  2014年   2182篇
  2013年   3108篇
  2012年   3951篇
  2011年   2937篇
  2010年   2260篇
  2009年   2361篇
  2008年   2097篇
  2007年   2309篇
  2006年   1986篇
  2005年   1679篇
  2004年   1311篇
  2003年   1134篇
  2002年   889篇
  2001年   855篇
  2000年   729篇
  1999年   545篇
  1998年   473篇
  1997年   488篇
  1996年   413篇
  1995年   438篇
  1994年   410篇
  1993年   312篇
  1992年   259篇
  1991年   255篇
  1990年   175篇
  1989年   154篇
  1988年   96篇
  1987年   77篇
  1986年   40篇
  1985年   13篇
  1984年   6篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   4篇
  1977年   1篇
  1976年   2篇
  1963年   1篇
  1962年   5篇
  1955年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
271.
Evaluation of nitrogen (N) dynamic in soil using regression equations is important for proper determination of N fertilization. A 3-year field experiment was conducted to (1) develop the best-fitted regression model relating corn grain and stover yield to soil residual ammonium (NH4)-N and nitrate (NO3)-N for corn yield prediction and (2) evaluate how such a model can be beneficial to the health of ecosystem by predicting the appropriate rates of N fertilization for corn production. Soil NH4-N and NO3-N were determined at corn harvest at the depths of 0–30 and 30–60 cm. Nitrogen fertilizer rates and soil mineral N accounted for a maximum of 93% variation in corn grain yield. Soil mineral N enhanced corn yield more than N fertilizer. Totals of 63.1 and 14.1 kg/ha of soil residual NO3-N and NH4-N were found in the 0- to 60-cm depth, indicating the importance of performing soil N tests.  相似文献   
272.
Reports supporting folklore beliefs that buckwheat (BW) can significantly contribute solubilized phosphorus (P) from sparingly soluble soil P to subsequent crops remain anecdotal. To quantify P solubilized by BW from five inorganic and three organic pools in a Fargo silty clay, spring wheat (Triticum aestivum L.) (WHT) was grown as a reference crop to compare P mineralized and P uptake in a complete randomized design. Following fractionation and analysis, P changes between pools indicated solubilization from recalcitrant to less recalcitrant P pools. Calcium-bound P contributed the most P (72% of inorganic pool) to the available fraction, and P uptake by BW (40 kg ha?1) was significantly greater than wheat (16 kg ha?1) from the inorganic pools, whereas WHT uptake was significantly greater (P < 0.05) from the organic pool. Following harvest, more P was found in available P pools after BW compared to WHT, suggesting potential solubilization of P to subsequent crops compared with WHT.  相似文献   
273.
The aims of this work are to test whether boron (B) may alleviate soil acidification and aluminum (Al) phytotoxicity to rape (Brassica napus L.) in acidic soil. The Al hydroxide that reacted with borax was called ad-B-Al hydroxide. Point of zero charge (PZC) of Al hydroxide (pH 4.86) was greater than that of ad-B-Al hydroxide (pH 4.68). Compared with the control, ad-B-Al hydroxide raised the soil pH significantly by 0.10 pH units. Rape was planted in the control soil, the soil treated with Al hydroxide, and the soil treated with ad-B-Al hydroxide. It was found that the B content of the soil and rape seedlings grown on the soil treated with ad-B-Al hydroxide was greater than the others. Biomass production of rape seedlings grown in the soil treated with ad-B-Al hydroxide was significantly increased compared to that in the others. These demonstrated that ad-B-Al hydroxide can be an important source of B for plants and alleviate acidity of acidic soils because it can decrease exchangeable acid and Al toxicity in soil significantly.  相似文献   
274.
A soil column laboratory experiment was carried out at the central campus, Mahatma Phule Agricultural University, Rahuri, India during 2008–2009 to study the accumulation and mobility of salts in Typic Haplusterts as influenced by primary biomethanated spentwash (PBSW). The PBSW was applied in three different levels (0.5, 1.0, and 2.5 cm) and then tap water with low salinity and low sodium hazard (C1S1 class) was used to carry out leaching in four different levels of water at the pore volume of soil (WPVS) (0.5, 1.0, 1.5, and 2.0). The electrical conductivity (EC) in the soil increased significantly with increasing levels of PBSW and decreased with increasing levels of WPVS in surface (0–15 cm deep) and subsurface (15–30 cm deep) soil layers. The exchangeable calcium (Ca2+), magnesium (Mg2+), and potassium (K+) increased, whereas exchangeable sodium (Na+) decreased with increasing levels of PBSW and WPVS in surface and subsurface layers of soil. The organic carbon content increased with increasing levels of PBSW and decreased with increasing levels of WPVS in both the soil layers. The cation exchange capacity (CEC) increased with increasing levels of PBSW and WPVS in both the soil layers. The exchangeable sodium percentage (ESP) decreased with increasing levels of PBSW and WPVS over the initial values of soil in both the layers. The pH of saturated paste (pHs) was reduced and electrical conductivity of extract (ECe) was increased with increasing levels of PBSW and WPVS in both the layers. The Na+ content of saturation paste extract increased significantly with increasing levels of PBSW and WPVS in both the soil layers.  相似文献   
275.
We assessed the cyanobacterial inoculation, green manure (GM) application, and chemical nitrogen (N) fertilization on grain/straw yield, nutrient balance, and nitrogenase activity under individual and integrated nutrient management mode in a rice–wheat cropping sequence. Individual and integrated application of cyanobacterial biofertilizer (CB) and GM with chemical fertilizer improved the soil health and production of rice crop. Integration of cyanobacterial and green manure resulted in a savings of 50 kg N ha?1. Functional relationships (R2, –83.5 to 95.7%) between the different sources of nutrients revealed that the maximum positive contribution of cyanobacteria was on final available N (45.2%) and available phosphorus (P, 18.5%). Green manure had the greatest contribution to total N, total P, zinc, iron, and manganese (Mn). However, cyanobacteria had a negative relationship with Mn and sodium (Na, –30.19%). A negative relationship with Na indicates the possibility of using cyanobacteria as an ameliorating agent for salt-affected soil.  相似文献   
276.
A synthetic superabsorbent polymer used to improve water-holding capacity of soils was investigated. Two water qualities, two irrigation intervals, and two application rates were administered to 24 treated soil columns. Polymer absorbance of water was proportional with time but inversely proportional to salinity levels. After a threshold period, which was longer for the lower water application rate, cumulative evaporation (E = √ct) increased with decrease in irrigation interval and the type of amendments added in order of control > peat moss > the absorbent copolymer. The value of c was largely determined by the water application rate and the type of the soil amendment. Salt and moisture distributions were governed by the amount of water conserved. Peat moss was more effective in leaching salts. The quantity of water applied per irrigation, rather than cumulative amount, seemed to affect water conservation, whereas the cumulative amount of water affected electrical conductivity–sodium absorption ratio (EC-SAR) distributions.  相似文献   
277.
The mineral compositions of the fruit and tree parts of common guava, Psidium guajava L., and strawberry guava, Psidium cattleianum var. lucidum, were determined. The study occurred during three seasons at six locations in Hawaii to assess guava as feed for livestock. Guava bark contained the greatest concentrations of calcium (Ca) and ash; leaves the greatest concentrations of magnesium (Mg), sulfur (S), sodium (Na), boron (B), and manganese (Mn); and the shoots had the greatest concentrations of nitrogen (N), phosphorus (P), and potassium (K). The leaves and the shoots had the greatest concentrations of copper (Cu) and iron (Fe). Between guava and waiwi, guava had greater concentrations of most minerals except for Na in all plant parts, and Mg and ash in the leaves. Guava leaves and shoots meet the macromineral requirements for various phases of sheep, goat, and beef cattle life cycles with the exception of P and Na. Guava shoots do not meet Mn requirements for lactating cows.  相似文献   
278.
ABSTRACT

Water and rice straw (RS) management practices can potentially affect the accumulation of soil organic carbon (SOC) in agricultural soils. Field experiments were conducted in two consecutive rice-growing seasons (wet and dry) to evaluate SOC stocks under different water (continuous flooding [CF], alternate wetting and drying [AWD]) and RS management practices (RS incorporation [RS-I], RS burning [RS-B], without RS incorporation and burning [WRS]) in a double-cropped paddy field. RS-I under AWD had higher volumetric water content than the same RS management under CF at tillering in both growing seasons. Total SOC was significantly higher under AWD at tillering in both wet and dry seasons and after harvesting in the dry season compared with CF. The same trend was also observed for C:N ratio at tillering and after harvesting in the dry season. RS-B plots had lower SOC stocks than RS-I and WRS plots across most of the measuring periods regardless of the growing seasons. SOC stocks were 33.09 and 39.31 Mg/ha at RS-B and RS-I plots, respectively, in the wet season, whereas the respective values were 21.45 and 24.55 Mg/ha in the dry season. Incorporation of RS enhanced SOC stocks under AWD irrigation, especially in the dry season before planting. Soil incorporation of RS in combination with AWD could be a viable option to increase SOC stocks in the double-cropped rice production region as it is strongly linked with soil fertility and productivity. However, the environmental consequences of RS incorporation in irrigated lowland rice production system should be taken into consideration before its recommendation for paddy field on a large scale.  相似文献   
279.
ABSTRACT

Field experiments were conducted for two consecutive years to evaluate the influence of cow dung and rice husk application rates on soil chemical properties and nutrient composition of cocoyam cormels. The treatments comprised four rates each of cow dung and rice husk (0, 10, 20, and 30 t/ha) arranged as a factorial experiment using randomized complete block design with three replicates. The treatments were incorporated into the soil 2 weeks before planting of cocoyam each year. After 2 years of cropping, soil samples were collected from the respective plots and analyzed so also cocoyam cormels. Cow dung application positively and significantly (P < .05) affected soil pH, organic matter (OM), and the soil nutrients (r = 0.95, 0.98, and 0.94–1.00, respectively) while rice husk application significantly and positively influenced soil OM, nitrogen and phosphorus (r = 0.98, 0.95, and 0.98, respectively). Aside potassium content that was enhanced, cow dung application did not significantly affect the nutrient composition of the cocoyam cormels. However, 30 t/ha of applied rice husk caused significant reduction in crude protein and fiber contents but significant increase in carbohydrate. There was negative and significant correlation between rice husk and the cormels crude protein (r = ?0.97). A total of 20 t/ha each of the organic fertilizers was found to be optimum for improving soil fertility and invariably yield without compromising the nutrient content of the cocoyam cormels.  相似文献   
280.
Abstract

The release of CO2 from fresh soil at medium moisture was examined for 14 days after the application of gamma‐radiation over the range 0.025 ‐ 10 Mrad. All doses stimulated the release of CO2 compared with non‐irradiated soil, but there was no extra yield of gas between 4 and 10 Mrad. Rapid evolution occurred during irradiation and over the next 24 hours, but towards the end of incubation both irradiated and untreated soil produced CO2 at similar rates.

Studies to elucidate the origin of CO2 indicated that the contribution from enzymes was predominant up to 2 Mrad, but at 10 Mrad, 45% of the gas could be formed by radiolytic decarboxylation of soil organic matter. Consequently, heavy irradiation of soil cannot stop production of CO2, and if high concentrations do interfere with the application of radiation to specific soil research investigations, the gas should be displaced or allowed to diffuse from the sample.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号