首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4097篇
  免费   303篇
  国内免费   333篇
林业   989篇
农学   246篇
基础科学   204篇
  802篇
综合类   1359篇
农作物   148篇
水产渔业   159篇
畜牧兽医   483篇
园艺   52篇
植物保护   291篇
  2024年   20篇
  2023年   61篇
  2022年   120篇
  2021年   115篇
  2020年   155篇
  2019年   159篇
  2018年   108篇
  2017年   160篇
  2016年   170篇
  2015年   167篇
  2014年   202篇
  2013年   298篇
  2012年   340篇
  2011年   272篇
  2010年   221篇
  2009年   248篇
  2008年   204篇
  2007年   190篇
  2006年   165篇
  2005年   187篇
  2004年   144篇
  2003年   107篇
  2002年   90篇
  2001年   120篇
  2000年   82篇
  1999年   80篇
  1998年   64篇
  1997年   66篇
  1996年   78篇
  1995年   58篇
  1994年   51篇
  1993年   46篇
  1992年   51篇
  1991年   30篇
  1990年   36篇
  1989年   28篇
  1988年   23篇
  1987年   9篇
  1986年   3篇
  1985年   1篇
  1980年   3篇
  1976年   1篇
排序方式: 共有4733条查询结果,搜索用时 15 毫秒
81.
Individual effect of different field scale management interventions for water saving in rice viz. changing date of transplanting, cultivar and irrigation schedule on yield, water saving and water productivity is well documented in the literature. However, little is known about their integrated effect. To study that, field experimentation and modeling approach was used. Field experiments were conducted for 2 years (2006 and 2007) at Punjab Agricultural University Farm, Ludhiana on a deep alluvial loamy sand Typic Ustipsamment soils developed under hyper-thermic regime. Treatments included three dates of transplanting (25 May, 10 June and 25 June), two cultivars (PR 118 inbred and RH 257 hybrid) and two irrigation schedules (2-days drainage period and at soil water suction of 16 kPa). The model used was CropSyst, which has already been calibrated for growth (periodic biomass and LAI) of rice and soil water content in two independent experiments. The main findings of the field and simulation studies conducted are compared to any individual, integrated management of transplanting date, cultivar and irrigation, sustained yield (6.3-7.5 t ha−1) and saved substantial amount of water in rice. For example, with two management interventions, i.e. shifting of transplanting date to lower evaporative demand (from 5 May to 25 June) concomitant with growing of short duration hybrid variety (90 days from transplanting to harvest), the total real water saving (wet saving) through reduction in evapotranspiration (ET) was 140 mm, which was almost double than managing the single, i.e. 66 mm by shifting transplanting or 71 mm by growing short duration hybrid variety. Shifting the transplanting date saved water through reduction in soil water evaporation component while growing of short duration variety through reduction in both evaporation and transpiration components of water balance. Managing irrigation water schedule based on soil water suction of 16 kPa at 15-20 cm soil depth, compared to 2-day drainage, did not save water in real (wet saving), however, it resulted into apparent water saving (dry saving). The real crop water productivity (marketable yield/ET) was more by 17% in 25th June transplanted rice than 25th May, 23% in short duration variety than long and 2% in irrigation treatment of 16 kPa soil water suction than 2-days drainage. The corresponding values for the apparent crop water productivity (marketable yield/irrigation water applied) were 16, 20 and 50%, respectively. Pooled experimental data of 2 years showed that with managing irrigation scheduling based on soil water suction of 16 kPa at 15-20 cm soil depth, though 700 mm irrigation water was saved but the associated yield was reduced by 277 kg ha−1.  相似文献   
82.
A field study was carried out to determine the effects of water stress imposed at different development stages on grain yield, seasonal evapotranspiration, crop-water relationships, yield response to water and water use efficiency of safflower (Carthamus tinctorius L.) for winter and summer sowing. The field trials were conducted on a loam Entisol soil in Thrace Region in Turkey, using Dincer, the most popular safflower variety in the research area. A randomised complete block design with three replications was used. Three known growth stages of the plant were considered and a total of 8 (including rainfed) irrigation treatments were applied. The effect of irrigation or water stress at any stage of development on grain yield per hectare and 1000 kernel weight, was evaluated. Results of this study showed that safflower was significantly affected by water shortage in the soil profile due to omitted irrigation during the sensitive vegetative stage. The highest yield was observed in the fully irrigated control and was higher for winter sowing than for summer sowing. Evapotranspiration calculated for non-stressed production was 728 and 673 mm for winter and summer sowing, respectively. Safflower grain yield of the fully irrigated treatments was 4.05 and 3.74 t ha−1 for winter and summer season, respectively. The seasonal yield response factor was 0.97 and 0.81 for winter and summer sowing, respectively. The highest total water use efficiency was obtained in the treatment irrigated only at vegetative stage while the lowest value was observed when the crop was irrigated only at yield stage. As conclusions: (i) winter sowing is suggested; (ii) if deficit irrigation is to apply at only one or two stages, Y stage or Y and F stages should be omitted, respectively.  相似文献   
83.
Water production functions are used to model yield response to various levels of supplemental irrigation (SI), to assess water productivity coefficients, and to identify optimum irrigation under various input-output price scenarios. The SI production function is taken as the difference between the total water production function (irrigation + rain) and that of rainwater. Theoretical analysis of the unconstrained objective function shows that the seasonal depth of SI to maximize profit occurs when the marginal product of water equals the ratio of unit water cost to unit product sale price. Applying this analysis to wheat in northern Syria, the production functions of SI under different rainfall conditions are developed. Coupled with current and projected water costs and wheat sale prices, the functions are used to develop an easy-to-use chart for determining seasonal irrigation rates to maximize profit under a range of seasonal rainfall amounts.Results show that, for a given seasonal rainfall, there is a critical value for the ratio of irrigation cost to production price beyond which SI becomes less profitable than rainfed production. Higher product prices and lower irrigation costs encourage the use of more water. Policies supporting high wheat prices and low irrigation costs encourage maximizing yields but with low water productivity. The resulting farmer practice threatens the sustainability of water resources. Balancing profitability versus sustainability is a challenge for policy makers. Our analysis can help national and local water authorities and policy makers determine appropriate policies for water valuation and allocation; and assist extension services and farmers in planning irrigation infrastructure and farm water management.  相似文献   
84.
The Central Asian countries face high water scarcity due to aridity and desertification but excess water is often applied to the main irrigated crops. This over-irrigation contributes to aggravate water scarcity problems. Improved water saving irrigation is therefore required, mainly through appropriate irrigation scheduling. To provide for it, after being previously calibrated and validated for cotton in the Fergana region, the irrigation scheduling simulation model ISAREG was explored to simulate improved irrigation scheduling alternatives. Results show that using the present irrigation scheduling a large part of the applied water, averaging 20%, percolates out of the root zone. Several irrigation strategies were analyzed, including full irrigation and various levels of deficit irrigation. The analysis focused a three-year period when experiments for calibration and validation of the model were carried out, and a longer period of 33 years that provided for an analysis considering the probabilities of the demand for irrigation water. The first concerned a wet period while the second includes a variety of climatic demand conditions that provided for analyzing alternative schedules for average, high and very high climatic demand. Results have shown the importance of the groundwater contribution, mainly when deficit irrigation is applied. Analyzing several deficit irrigation strategies through the respective potential water saving, relative yield losses, water productivity and economic water productivity, it could be concluded that relative mild deficits may be adopted. Contrarily, the adoption of high water deficit that produce high water savings would lead to yield losses that may be economically not acceptable.  相似文献   
85.
Abstract –  Age at maturity in males of the freshwater goby Tridentiger brevispinis , a species with exclusive paternal care, was investigated in two populations in Lake Biwa, Japan, that differed markedly in nest site abundance. At Ohmi-maiko, where nest sites were scarce, most males matured at age 3, and mean body size of males guarding eggs in nests was larger than that of males sampled randomly (including both guarding and nonguarding males) in the population. Conversely, at Minamihama, where nest sites were abundant, many males matured at age 1, and there was no difference in body size between guarding males and males collected randomly. The slope of regression lines between body size of the guarding male and the number of eggs in his nest was greater in Ohmi-maiko than in Minamihama. These results suggest that the shortage of nest sites enhances reproductive success in larger males, probably through male–male competition for nest sites and female mate choice for larger males. I conclude that in nest spawners, the availability of nest sites should strongly affect life-history traits of males through sexual selection.  相似文献   
86.
采用DEA-mamlquist指数测算2004—2019年中国17个玉米主产省(区)的全要素生产率,运用联立方程组模型实证检验农村互联网发展对玉米全要素生产率的影响及其作用机理,并分区域探讨其差异性。结果显示:2004—2019年中国玉米全要素生产率年均增长0.2%,主要依靠技术进步的单轨模式驱动。农村互联网的发展显著(P<0.01)提升玉米全要素生产率,主要依靠技术进步和技术效率的协同作用驱动。分区域来看,农村互联网发展对玉米全要素生产率均具有显著(P<0.01)的促进作用,其影响程度由高到低依次为北方春播玉米区>黄淮海平原夏播玉米区>西北灌溉玉米区>西南山地玉米区。建议进一步提高农村互联网的配套设施建设,发挥互联网“连接经济”的优势,应用多元化互联网技术,促进不同生态类型区玉米生产效率的提升。  相似文献   
87.
对区域耕地质量进行评价,是农业发展所必须的基础性工作,对区域种植业合理布局及耕地土壤可持续利用具有重要意义。本研究在构建包含立地条件、土壤理化性状和土壤养分状况在内的3个子目标、10个指标的耕地地力评价指标体系基础上,采用模糊数学理论确定指标隶属度,结合层次分析法进行加权求和,对陵水黎族自治县各乡镇进行耕地地力综合评价。研究表明,陵水县耕地地力为中等水平,且各乡镇耕地地力分布不均,其中以椰林镇和英州镇最高,黎安镇和群英乡最低;降雨特征和地形因素是耕地地力在研究区内空间分布不均的主要成因。  相似文献   
88.
通过地统计学方法分析了土壤全氮和速效钾空间变异特征,并对其合理取样位置进行探讨,绘制了兼顾土壤全氮和速效钾综合养分的合理取样位置空间分布图.结果表明:橡胶园土壤全氮和速效钾综合养分合理取样位置主要受土壤速效钾含量分布决定;在空间分布上,综合养分的合理取样位置主要位于远离施肥穴的橡胶树行间萌生带和中间树头附近区域.此结果为南方长期经济作物土壤样品取样位置的确定提供一种新的尝试.  相似文献   
89.
长期绿肥还田对江南稻田系统生产力及抗逆性的影响   总被引:2,自引:0,他引:2  
 依据江南丘陵地区双季稻田28年(1981-2008年)长期绿肥还田的田间定位试验和4年的养分耗竭盆栽试验,分析比较了长期不同量绿肥还田对稻田系统生产力和抗逆性的综合影响。结果表明,常量绿肥还田和高量绿肥还田处理下,早稻、晚稻和历年的全年平均籽粒产量和生物学产量及其变异系数与长期单施化肥处理差异不显著,但由于绿肥还田处理施用绿肥替代部分化肥,平均每年的化肥N、P和K投入量比单施化肥处理分别减少90.0、9.9和72.0 kg/hm2。绿肥处理的双季稻全年产量呈上升趋势,而长期化肥处理则呈下降趋势,且前者的全年产量可持续性产量指数均略高于后者,常量绿肥还田下稻田系统的耐瘠能力也显著高于长期单施化肥处理。不同量绿肥还田下稻田系统生产力差异不显著,但耐瘠能力常量还田处理较高。  相似文献   
90.
以超级稻宁粳1号和常规稻镇稻11为材料,采用盆栽试验,系统比较了两个品种的生产力及CH4排放的差异,并分析了其主要原因。结果表明,虽然两个品种的CH4排放通量的动态特征和生物学产量均基本相似,但宁粳1号的CH4排放总量比镇稻11低35.22%(P<0.05),土壤水溶液中CH4平均浓度也低41.31%(P<0.01)。两个品种的CH4排放差异主要出现在水稻生长中期,前期和后期的差异不明显。比较两个品种的生物学产量、株高、叶面积、根系等生长特性,发现宁粳1号强大的根系是降低CH4排放的最关键因素。综合比较植株生产力和CH4排放强度,发现宁粳1号不仅具有更高产量,而且单位干物质和籽粒产量的CH4排放量均分别比镇稻11低42.42%和81.38%(P<0.05)。上述结果显示,水稻产量的提高不一定伴随CH4排放的增加,选育高产低排放的水稻品种是可能的。大面积推广应用超级稻,可能不仅利于粮食安全,也有利于温室气体减排。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号