首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   2篇
  国内免费   6篇
林业   1篇
农学   50篇
  5篇
综合类   16篇
农作物   6篇
水产渔业   3篇
畜牧兽医   9篇
园艺   2篇
植物保护   2篇
  2021年   1篇
  2020年   2篇
  2018年   1篇
  2016年   2篇
  2012年   3篇
  2010年   3篇
  2009年   2篇
  2008年   6篇
  2007年   3篇
  2006年   2篇
  2005年   5篇
  2004年   2篇
  2003年   1篇
  2001年   4篇
  2000年   2篇
  1999年   5篇
  1998年   5篇
  1997年   2篇
  1996年   7篇
  1994年   4篇
  1993年   4篇
  1992年   4篇
  1991年   10篇
  1990年   6篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1978年   1篇
排序方式: 共有94条查询结果,搜索用时 0 毫秒
61.
Although the wild sunflower species Helianthus laevigatus has not been extensively studied it may be considered for sunflower breeding as a potential source of desirable genes for Sclerotinia stalk rot resistance and high contents of proteins and linoleic acid in the seed. A set of six H. laevigatus populations was crossed to cultivated sun~ower lines and produced nine F1 (2-14 plants) and 66 BC1F1 hybrid combinations (1-13 plants). Male sterility occurred in F1 and BC1F1 hybrid combinations and pollen viability was lower in the progenies than in the parents (51.6-77.2%in F1 and in F1 and 4.8-34.0% in BC1F1). Meiosis was normal in the H. laevigatus populations It was found that this tetraploid species also occurred in a hexaploid form Numerous irregularities were observed in the meiosis of the F1 interspecific hybrids During diakinesis, quadrivalents and hexavalents were recorded in addition to bivalents Dislocated chromosomes and chromosome bridges were present in the other phases The chromosome number in F1 was 68 (tetraploid). Irregularities in chromosome pairing were observed in the interspecific hybrids at BC1F1. There were many univalents, and trivalents quadrivalents and hexavalents were also present The chromosome number in the BC1F1 generation ranged from 34 to 60. The occurrence of meiotic irregularities in the F1 and BC1F1 interspecific hybrids indicates that H. laevigatus and the cultivated sunflower differ in genome constitution.  相似文献   
62.
F. Ahmad  A. Comeau 《Plant Breeding》1991,106(4):275-283
New intergeneric hybrids were obtained between Triticum aestivum L. cv. Tukuho’ (2n = 6x = 42, AABBDD) and Agropyron fragile (Roth) Candargy PGR 8097 (2n = 4x = 28, PPPP) at a frequency of 1.06 %, through the use of direct embryo culture and in ovulo embryo culture. Such hybrids could be used to transfer barley yellow dwarf virus (BYDV) resistance and winterhardiness into bread wheat. The somatic chromosome number in all the hybrid plants was 2n = 5x = 35, as expected. Considerable variation in chromosome pairing was observed among the different hybrid plants. Average meiotic chromosome configuration at metaphase I was 17.29 Is + 6.57 rod Us + 1.97 ring Us + 0.18 III + 0.03 IV + 0.002 VI. The high level of chromosome pairing in some F1 hybrids was attributed to Ph-suppressor gene(s) present in A. fragile. The hybrids could not be backcrossed to wheat, but amphiploid seeds have been obtained by colchicine treatment.  相似文献   
63.
Kengyilia mutica (Keng) Yang, Yen et Baum is a hexaploid perennial grass of the tribe Triticeae native to western central China. The analyzer species with known genomic constitution used to produce interspecific hybrids with the target taxon were Roegneria kamoji Ohwi (StStHHYY), K. hirsuta (Keng) J. L. Yang, Yen et Baum (PPStStYY) and K. rigidula (Keng) J. L. Yang, Yen et Baum (PPStStYY). Analysis of metaphase I pairing configurations in the F1 hybrids indicates that K. mutica possesses the P, St and Y genomes, with only minor structural rearrangements. Chromosome pairing in hybrids supports the inclusion of K. mutica in the genus Kengyilia.  相似文献   
64.
Eleven C2 and two C3 0pen-pollinated plains from Elymus canadensis × Secale cereale amphiploid plants (2n = 6x = 42, SSHHRR) were examined for chromosome constitution and meiosis. Chromosome numbers of the progeny varied: 2n = 26, 27, 28, 36, 37, 39, 40, and 41. Elimination of portions of genome constituents were made at random and were irregular in all o the progeny. Monosomic (2n = 41) and nullisomic (2n = 40) plants lost one to two E. canadensis or S. cereale chromosomes and showed average of 17 to 18 bivalents and 4 to 5 univalents per cell at Ml. The C2, aneuploid plants with 36 to 41 chromosomes seemed to result from selfing or intercrossing among; the C1 amphiploid plants, while the plants of 2n = 26 to 2S (6–9 II + 10–141) might originate from outcrosses of the Cl amphiploid to S. cereale. Bivalent pairing might be preferentially intragenomic (S-S, H-H, or R-R). The occurrence of multivalents indicates a low potential of both intragenomic and intragenomic pairing; Pollen of the lour plants showed poor stainability (1 to 13 %) and no seed set in any of the progeny.  相似文献   
65.
Trifolium occidentale is a diploid wild relative with the potential to improve the drought and salt tolerances of white clover (Trifolium repens). Previous work has shown that it is possible to efficiently produce large T. repens × T. occidentale breeding populations using colchicine‐doubled (4×) T. occidentale. For effective introgression (backcross) breeding, it is also essential that interspecific chromosome pairing and recombination occur. In this study, it was apparent that chromosome pairing was occurring not only between T. occidentale and T. repens subgenomes, but also between the ancestral subgenomes of T. repens. Thus, interspecific hybridization has the potential for major genome recombination and opens the way for introgression of traits from T. occidentale into white clover.  相似文献   
66.
The wheat progenitors and other wild relatives continue to be important sources of genes for agronomically desirable traits, which can be transferred into durum wheat (Triticum turgidum; 2n = 4x = 28; AABB genomes) cultivars via hybridization. Chromosome pairing in durum × alien species hybrids provides an understanding of genomic relationships, which is useful in planning alien gene introgression strategies. Two durum cultivars, ‘Lloyd’ and ‘Langdon’, were crossed with diploid wheatgrass, Thinopyrum bessarabicum (2n = 2x = 14; JJ), to synthesize F1 hybrids (2n = 3x = 21; ABJ) with Ph1. ‘Langdon’ disomic substitution 5D(5B) was used as a female parent to produce F1 hybrids without Ph1, which resulted in elevation of pairing between durum and grass chromosomes – an important feature from the breeding standpoint. The F1 hybrids were backcrossed to respective parental cultivars and BC1 progenies were raised. ‘Langdon’ 5D(5B) substitution × Th. bessarabicum F1 hybrids were crossed with normal ‘Langdon’ to obtain BC1 progeny. Chromosome pairing relationships were studied in F1 hybrids and BC1 progenies using both conventional staining and fluorescent genomic in situ hybridization (fl‐GISH) techniques. Multicolour fl‐GISH was standardized for characterizing the nature and specificity of chromosome pairing: A–B, A–J and B–J pairing. The A–J and B–J pairing will facilitate gene introgression in durum wheat. Multicolour fl‐GISH will help in characterizing alien chromosome segments captured in the durum complement and in their location in the A and/or B genome, thereby accelerating chromosome engineering research.  相似文献   
67.
 采用单株选择(不育系和保持系花粉镜检)、成对回交、株系鉴定、混系繁殖,辅以在开花期去除不育系中异杂株的方法提纯滇Ⅰ型不育系;经田间种植鉴定,原种纯度达99.90%以上;缩短了种子生产年限,减少繁殖代数,有效地保持了不育系原有的配合力和典型性状。达到“起点高、防杂严、数量大、程序简”的目的。  相似文献   
68.
Aegilops umbellulata acc. 3732, an excellent source of resistance to major wheat diseases, was used for transferring leaf rust and stripe rust resistance to cultivated wheat. An amphiploid between Ae. umbellulata acc. 3732 and Triticum durum cv. WH890 was crossed with cv. Chinese Spring Ph I to induce homoeologous pairing between Ae. umbellulata and wheat chromosomes. The F1 was crossed to the susceptible Triticum aestivum cv. ‘WL711’ and leaf rust and stripe rust resistant plants were selected among the backcross progenies. Homozygous lines were selected and screened against six Puccinia triticina and four Puccinia striiformis f. sp. tritici pathotypes at the seedling stage and a mixture of prevalent pathotypes of both rust pathogens at the adult plant stage. Genomic in situ hybridization in some of the selected introgression lines detected two lines with complete Ae. umbellulata chromosomes. Depending on the rust reactions and allelism tests, the introgression lines could be classified into two groups, comprising of lines with seedling leaf rust resistance gene Lr9 and with new seedling leaf rust and stripe rust resistance genes. Inheritance studies detected an additional adult plant leaf rust resistance gene in one of the introgression lines. A minimum of three putatively new genes—two for leaf rust resistance (LrU1 and LrU2) and one for stripe rust resistance (YrU1) have been introgressed into wheat from Ae. umbellulata. Two lines with no apparent linkage drag have been identified. These lines could serve as sources of resistance to leaf rust and stripe rust in breeding programs.  相似文献   
69.
本文探讨了家蚕四倍体雌的性染色体的联会,分离形式及三倍体雌的染色体组成与产卵性状的关系。1)四倍体雌在减数分裂时,绝大多数呈Z-Z联会,分离,W不参加联会,随机分向两极或同时进入某一极;Z-W联会,分离的频率很小。四倍体雌X二倍体雄的三倍体子代的形态笥状的分离符合5:1的理论值,其染色体组成有3A+ZZ,3A+ZZW,3A+ZZWW,3A+ZZZ,3A+ZWW5种,呈15:67,6:15:1.2:  相似文献   
70.
油菜育种考种和产量估测都需要测试油菜每角果籽粒数,现阶段油菜每角粒数仍然通过人工拨荚计数籽粒数量的方式获取,人工计数方式费时费力效率低下,已经远远不能满足现代化育种和产量估测需要.针对油菜每角粒数依靠人工计数的不足,该研究提出一种基于油菜角果长度图像识别的每角粒数测试方法.通过人工测量油菜角果长度和每角粒数,建立油菜角...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号