首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12178篇
  免费   778篇
  国内免费   1025篇
林业   505篇
农学   695篇
基础科学   320篇
  5843篇
综合类   4522篇
农作物   391篇
水产渔业   197篇
畜牧兽医   738篇
园艺   248篇
植物保护   522篇
  2024年   121篇
  2023年   377篇
  2022年   520篇
  2021年   562篇
  2020年   563篇
  2019年   579篇
  2018年   465篇
  2017年   726篇
  2016年   800篇
  2015年   591篇
  2014年   676篇
  2013年   1004篇
  2012年   1157篇
  2011年   864篇
  2010年   611篇
  2009年   632篇
  2008年   514篇
  2007年   600篇
  2006年   534篇
  2005年   431篇
  2004年   285篇
  2003年   229篇
  2002年   161篇
  2001年   145篇
  2000年   132篇
  1999年   96篇
  1998年   90篇
  1997年   87篇
  1996年   73篇
  1995年   74篇
  1994年   34篇
  1993年   60篇
  1992年   39篇
  1991年   41篇
  1990年   22篇
  1989年   25篇
  1988年   25篇
  1987年   14篇
  1986年   9篇
  1985年   3篇
  1984年   1篇
  1982年   2篇
  1981年   2篇
  1978年   2篇
  1975年   1篇
  1962年   2篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
51.
Prescribed burning is a common land management technique in many areas of the UK uplands. However, concern has been expressed at the impact of this management practice on carbon stocks and fluxes found in the carbon‐rich peat soils that underlie many of these areas. This study measured both carbon stocks and carbon fluxes from a chronosequence of prescribed burn sites in northern England. A range of carbon parameters were measured including above ground biomass and carbon stocks; net ecosystem exchange (NEE), net ecosystem respiration (Reco) and photosynthesis (Pg) from closed chamber methods; and particulate organic carbon (POC). Analysis of the CO2 data showed that burning was a significant factor in measured CO2 readings but that other factors such as month of sampling explained a greater proportion of the variation in the data. Carbon budget results showed that whereas all the plots were net sources of carbon, the most recent burn scars were smaller sources of carbon compared with the older burn scars, suggesting that burning of Calluna‐dominated landscapes leads to an ‘avoided loss’ of carbon. However, this management intervention did not lead to a transition to a carbon sink and that for carbon purposes, active peat‐forming conditions are desirable.  相似文献   
52.
Quantifying the amount of carbon (C) incorporated from decomposing residues into soil organic carbon (CS) requires knowing the rate of C stabilization (humification rate) into different soil organic matter pools. However, the differential humification rates of C derived from belowground and aboveground biomass into CS pools has been poorly quantified. We estimated the contribution of aboveground and belowground biomass to the formation of CS in four agricultural treatments by measuring changes in δ13C natural abundance in particulate organic matter (CPOM) associated with manipulations of C3 and C4 biomass. The treatments were (1) continuous corn cropping (C4 plant), (2) continuous soybean cropping (C3), and two stubble exchange treatments (3 and 4) where the aboveground biomass left after the grain harvest was exchanged between corn and soybean plots, allowing the separation of aboveground and belowground C inputs to CS based on the different δ13C signatures. After two growing seasons, CPOM was primarily derived from belowground C inputs, even though they represented only ∼10% of the total plant C inputs as residues. Belowground biomass contributed from 60% to almost 80% of the total new C present in the CPOM in the top 10 cm of soil. The humification rate of belowground C inputs into CPOM was 24% and 10%, while that of aboveground C inputs was only 0.5% and 1.0% for soybean and corn, respectively. Our results indicate that roots can play a disproportionately important role in the CPOM budget in soils. Keywords Particulate organic matter; root carbon inputs; carbon isotopes; humification rate; corn; soybean.  相似文献   
53.
Application of hydrophilic polymers composed of cross‐linked polyacrylate can improve soil water‐holding capacity and accelerate the restoration of post‐mining substrates. In this work, we studied the persistence of a polyacrylate polymer incorporated into a soil and its impact on plant nutrients at a reclamation site of former lignite mining in Lusatia (Germany). In contrast to autumn application, the incorporation of the polymer enhanced the sequestration of plant‐derived carbon in the soil, which was reflected by a significant increase in the concentration of a lignin marker. Attenuated total reflexion–Fourier transform infrared spectra (ATR‐FTIR) and total elemental contents in the applied polymer suggested an intensive cation exchange between the polymer framework and the soil‐forming substrate. In addition, there was an enrichment of carbonaceous material, which seems to reduce the swelling and thus the water‐holding capacity of the cross‐linked polyacrylate. Conversely, this process protected the polymer structure from rapid decomposition.  相似文献   
54.
Cañahua (Chenopodium pallidicaule Aellen) is a semi‐domesticated relative of quinoa (Chenopodium quinoa Willd.) with high nutritious quality. It is tolerant to frost, drought, saline soils and pests. One seed yield limitation is seed loss during the maturity stages. Two greenhouse experiments in Denmark and field experiments in Bolivia were carried out to determine seed shattering in landraces and cultivars with different growth habits. 15–21 % of the seed shattering in the fields took place whilst the plants still were flowering and 25–35 % during physiological maturity. Seed shattering varied between locations on the Bolivian Altiplano. Cañahua types with the semi‐prostrate growth (‘lasta’) had the highest seed shattering rate in the greenhouse experiments. The Umacutama landrace had lower seed shattering (1 %) than the cultivar Kullaca (7.2 %) both of the ‘lasta’ type. Under field conditions, the cultivar Illimani with the erect growth (‘saihua’) had the highest seed shattering rate (6.4–33.7 %) at both locations and at four different sowing dates. The Umacutama had the lowest rate (0.5–1.5 %). There were no significant differences between plants of the ‘lasta’ and the ‘saihua’ types. The landrace had significantly less seed loss than the cultivars. However, in the greenhouse, the landrace yield was approximately 25 % lower than the yields of the cultivars. In general, cañahua cultivars had higher yield compared to landraces, but also a higher seed shattering rate. Landraces may be used in breeding programmes to develop high‐yielding cultivars with reduced seed shattering.  相似文献   
55.
We investigated nitrous oxide (N2O) emission from an irrigated rice field over two years to evaluate the management of nitrogenous fertiliser and its effect on reducing emissions. Four forms of nitrogenous fertilisers: NPK at the recommended application rate, starch–urea matrix (SUM) + PK, neem‐coated urea + PK and urea alone (urea without coating) were used. Gas samples were collected from the field at weekly intervals with the static chamber technique. N2O emissions from different treatments ranged from 11.58 to 215.81 N2O‐N μg/m2/h, and seasonal N2O emissions from 2.83 to 3.89 kg N2O‐N/ha. Compared with other fertilisers, N2O emissions were greatest after the application of the conventional NPK fertiliser. Moreover, SUM + PK reduced total N2O emissions by 22.33% (< 0.05) compared with NPK during the rice‐growing period (< 0.05). The results indicate a strong correlation between N2O emissions and soil organic carbon, nitrate, ammonium, above‐ and below‐ground plant biomass and photosynthesis (< 0.05). The application of SUM + PK in rice fields is suitable as a means of reducing N2O emissions without affecting grain production.  相似文献   
56.
Here, we examine soil-borne microbial biogeography as a function of the features that define an American Viticultural Area (AVA), a geographically delimited American wine grape-growing region, defined for its distinguishing features of climate, geology, soils, physical features (topography and water), and elevation. In doing so, we lay a foundation upon which to link the terroir of wine back to the soil-borne microbial communities. The objective of this study is to elucidate the hierarchy of drivers of soil bacterial community structure in wine grape vineyards in Napa Valley, California. We measured differences in the soil bacterial and archaeal community composition and diversity by sequencing the fourth variable region of the small subunit ribosomal RNA gene (16S V4 rDNA). Soil bacterial communities were structured with respect to soil properties and AVA, demonstrating the complexity of soil microbial biogeography at the landscape scale and within the single land-use type. Location and edaphic variables that distinguish AVAs were the strongest explanatory factors for soil microbial community structure. Notably, the relationship with TC and TN of the <53 μm and 53–250 μm soil fractions offers support for the role of bacterial community structure rather than individual taxa on fine soil organic matter content. We reason that AVA, climate, and topography each affect soil microbial communities through their suite of impacts on soil properties. The identification of distinctive soil microbial communities associated with a given AVA lends support to the idea that soil microbial communities form a key in linking wine terroir back to the biotic components of the soil environment, suggesting that the relationship between soil microbial communities and wine terroir should be examined further.  相似文献   
57.
Addition of organic matter (OM) to flooded soils stimulates reductive dissolution of Fe(III) minerals, thereby mobilizing associated phosphate (P). Hence, OM management has the potential to overcome P deficiency. This study assessed if OM applications increases soil or mineral fertilizer P availability to rice under anaerobic (flooded) condition and if that effect is different relative to that in aerobic (nonflooded) soils. Rice was grown in P‐deficient soil treated with combinations of addition of mineral P (0, 26 mg P/kg), OM (0, ~9 g OM/kg as rice straw + cattle manure) and water treatments (flooded vs nonflooded) in a factorial pot experiment. The OM was either freshly added just before flooding or incubated moist in soil for 6 months prior to flooding; blanket N and K was added in all treatments. Fresh addition of OM promoted reductive dissolution of Fe(III) minerals in flooded soils, whereas no such effect was found when OM had been incubated for 6 months before flooding. Yield and shoot P uptake largely increased with mineral P addition in all soils, whereas OM addition increased yield and P uptake only in flooded soils following fresh OM addition. The combination of mineral P and OM gave the largest yield and P uptake. Addition of OM just prior to soil flooding increased P uptake but was insufficient to overcome P deficiency in the absence of mineral P. Larger applications of OM are unlikely to be more successful in flooded soils due to side effects, such as Fe toxicity.  相似文献   
58.
Biochar addition can expand soil organic carbon (SOC) stock and has potential ability in mitigating climate change. Also, some incubation experiments have shown that biochar can increase soil inorganic carbon (SIC) contents. However, there is no direct evidence for this from the field experiment. In order to make up the sparseness of available data resulting from the long‐term effect of biochar amendment on soil carbon fractions, here we detected the contents and stocks of the bulk SIC and SOC fractions based on a 10‐year field experiment of consecutive biochar application in Shandong Province, China. There are three biochar treatments as no‐biochar (control), and biochar application at 4.5 Mg ha?1 year?1 (B4.5) and 9.0 Mg ha?1 year?1 (B9.0), respectively. The results showed that biochar application significantly enhanced SIC content (3.2%–24.3%), >53 μm particulate organic carbon content (POC, 38.2%–166.2%) and total soil organic carbon content (15.8%–82.2%), compared with the no‐biochar control. However, <53 μm silt–clay‐associated organic carbon (SCOC) content was significantly decreased (14%–27%) under the B9.0 treatment. Our study provides the direct field evidence that SIC contributed to carbon sequestration after the biochar application, and indicates that the applied biochar was allocated mainly in POC fraction. Further, the decreased SCOC and increased microbial biomass carbon contents observed in field suggest that the biochar application might exert a positive priming effect on native soil organic carbon.  相似文献   
59.
In order to quantify the influence of land use systems on the level of soil organic matter (SOM) to develop recommendations, long-term field studies are essential. Based on a crop rotation experiment which commenced in 1970, this paper investigated the impact of crop rotations involving increased proportions of sugar beet on SOM content. To this end, soil samples were taken in 2010 and 2012 from the following crop rotation sequences: sugar beet–sugar beet–winter wheat–winter wheat (SB–SB–WW–WW = 50%), sugar beet–sugar beet–sugar beet–winter wheat (SB–SB–SB–WW = 75%), sugar beet–grain maize (SB–GM = 50%) and sugar beet-monoculture (SB = 100%); these were analysed in terms of total organic carbon (TOC) and microbial biomass carbon (MBC) content, MBC/TOC ratio and the TOC stocks per hectare. In addition, humus balances were created (using the software REPRO, reference period 12 years) in order to calculate how well the soil was supplied with organic matter. In the field experiment, harvest by-products (WW and GM straw as well as SB leaves) were removed. After 41 years, no statistically significant differences were measured between the crop rotations for the parameters TOC, MBC, MBC/TOC ratio and the TOC stock per hectare. However, the calculated humus balance was significantly affected by the crop rotation. The calculated humus balance became increasingly negative in the order SB–SB–WW–WW, SB–SB–SB–WW, SB monoculture and SB–GM, and correlated with the soil parameters. The calculated humus balances for the reference period did not reflect the actual demand for organic matter by the crop rotations, but instead overestimated it.  相似文献   
60.
The nitrogen (N) fertilizer effect of layer hen and broiler manure applied at different times on spring barley yield was studied in seven Swedish field experiments during 2005–2008. Two experiments had parallel field incubations to study N release after fertilizer application. The effect of total N in manure on N offtake was 30–40% that of mineral N, except in a dry year, when the effect was very low. Although the relative proportions of ammonium N, uric acid N and other N differed between the hen and broiler manure, the effect of total N was similar for both. In field incubations, mineral N decreased from 75 to 60% of total N applied in hen manure, whereas it increased from 20 to 50% in broiler manure, because of net immobilization and release, respectively. The limited fertilizer nitrogen replacement value, corresponding to only 30–40% of total N, could be as a result of ammonia volatilization after rather shallow incorporation with harrow. Net N release from broiler manure lasted for 6–8 weeks after application, after which it generally ceased. In some cases, manure application in early spring gave better yield effects than application at sowing, probably because of better synchronization of the N release with crop N requirements. The residual N effect on the N offtake in crop in the year after manure application was on average 3% of the total N applied, equivalent to a fertilizer replacement value of about 6%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号