首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1303篇
  免费   57篇
  国内免费   552篇
林业   95篇
农学   125篇
基础科学   453篇
  548篇
综合类   510篇
农作物   34篇
水产渔业   25篇
畜牧兽医   76篇
园艺   11篇
植物保护   35篇
  2024年   58篇
  2023年   120篇
  2022年   160篇
  2021年   153篇
  2020年   89篇
  2019年   115篇
  2018年   60篇
  2017年   77篇
  2016年   104篇
  2015年   66篇
  2014年   91篇
  2013年   87篇
  2012年   106篇
  2011年   72篇
  2010年   88篇
  2009年   87篇
  2008年   66篇
  2007年   62篇
  2006年   48篇
  2005年   33篇
  2004年   35篇
  2003年   19篇
  2002年   24篇
  2001年   16篇
  2000年   22篇
  1999年   9篇
  1998年   11篇
  1997年   2篇
  1996年   5篇
  1995年   8篇
  1994年   3篇
  1993年   4篇
  1992年   3篇
  1991年   6篇
  1990年   1篇
  1989年   1篇
  1956年   1篇
排序方式: 共有1912条查询结果,搜索用时 0 毫秒
101.
针对奶牛进食行为监测通常要为每头奶牛配备监测设备,但受限于设备成本,很多应用于奶牛养殖场的奶牛行为监测方法难以普及的问题,提出了一种多目标奶牛进食行为识别方法,基于YOLO v3算法,根据目标差异,将牛舍中的奶牛分为3类目标来实现奶牛进食行为监测,以通过单台设备监测多头奶牛的进食行为.YOLO v3算法具有计算成本高、...  相似文献   
102.
基于近红外光谱法无损检测芦柑表面多种农药残留研究   总被引:2,自引:0,他引:2  
以表面喷施不同浓度梯度的乙酰甲胺磷和毒死蜱混合农药的芦柑为研究对象。把两种农药以1:1比例混合,然后用自来水配置成1:100、1:300、1:500三种浓度农药溶液,分别喷施在192个芦柑表面上。采集近红外光谱数据后,应用NY/T761―2008方法 ,通过SP―6890气象色谱仪检测芦柑表面两种农药的残留量。对所得数据分别采用多元散射校正(MSC)和标准正态变量变换(SNV)两种光谱预处理方法 ,并结合联合区间偏最小二乘法(SiPLS)建立农药残留预测模型。结果表明:采用MSC的光谱预处理方法时建立的乙酰甲胺磷预测模型较优,其预测集相关系数R为0.8199;而采用SNV的光谱预处理时建立的SiPLS毒死蜱预测模型较优,其预测集相关系数为0.8434。可见,应用近红外光谱技术定量检测芦柑表面多种农药残留是可行的。  相似文献   
103.
林相泽  徐啸  彭吉祥 《农业机械学报》2022,53(9):270-276,294
为了实现对不同稻飞虱的快速准确识别,同时防止同一姿态下的同一只昆虫被重复计数,提出一种将图像消冗与CenterNet网络相结合的识别分类方法。首先利用自主设计的田间昆虫采集装置,自动获取昆虫图像并制作数据集。其次,将CenterNet算法与图像消冗算法相结合,选用深层特征融合网络(Deep layer aggregation, DLA)作为主干网络来提取昆虫的特征,并进行识别分类。将本文方法与经典机器学习和深度学习模型进行对比,实验结果表明,对于田间昆虫采集装置获取到的相似度较高的活体图像,本文方法不仅能够快速处理昆虫图像,而且能够成功解决昆虫重复检测的问题,平均精度均值为88.1%,检测速率为42.9f/s,无论是精度还是处理速度本文方法都具有较明显优势。该研究有效地完成了对3种主要稻飞虱的识别分类,对不同时间段采集到的昆虫表现出良好的泛化能力,可用于后期水稻害虫暴发的智能预警和测报。  相似文献   
104.
我国玉米产量高,高效、便携、低成本的玉米成分检测技术及其装置对于玉米品质的检测至关重要,基于可见/近红外光谱技术,设计了一款玉米主要品质便携式检测装置。为探究所设计方案的可行性,自行搭建了可见/近红外光谱采集系统,对不同品种共72份玉米样本进行光谱采集,分别建立了玉米籽粒蛋白质、脂肪和淀粉含量的偏最小二乘(PLS)预测模型以及结合竞争性自适应重加权算法(CARS)的CARS-PLS预测模型。结果表明,CARS方法可以有效筛选出各组分的相关变量,提升模型效果,各组分质量分数的预测集均方根误差(RMSEP)均有所下降, 蛋白质质量分数的RMSEP由0.4866%降至0.4068%;脂肪质量分数的RMSEP由0.1549%降至0.0989%;淀粉质量分数的RMSEP由0.4714%降至0.4675%。预测集相关系数Rp均有所提高,蛋白质质量分数的Rp由0.9309提升至0.9603;脂肪质量分数的Rp由0.9497提升至0.9770;淀粉质量分数的Rp由0.9520提升至0.9605。基于CARS方法所筛选的各组分特征变量,选择了合适的近红外光谱传感器,在此基础上设计了检测装置的光谱采集单元、控制单元、显示单元、电源单元以及散热单元,并基于NodeMCU开发板和Arduino IDE开发工具,采用Arduino语言对装置控制程序进行开发,实现“一键式”快速检测。试验验证了该装置的检测精度和稳定性,结果表明,预测玉米籽粒蛋白质、脂肪和淀粉质量分数的相关系数分别为0.8431、0.8243、0.8154,预测均方根误差分别为0.3576%、0.2318%、0.2333%,相对分析误差分别为1.8577、1.7761、1.5735。对同一样本多次重复预测,各组分预测值的变异系数分别为0.235%、0.241%和0.028%。  相似文献   
105.
针对研究人员难以利用计算机视觉对棉种这类尺寸较小的物体进行双面检测,导致检测效果不佳的问题,设计了一款新型棉种检测分选装置,利用亚克力板在强光和白色背景下透明的特点,将棉种通过上料装置滑入透明亚克力板的凹槽中,随着转盘的转动,同一批棉种的正反两面图像分别由2个不同位置的CCD相机采集得到.利用改进YOLO v4的目标检...  相似文献   
106.
史立新 《农机化研究》2021,43(3):240-244
首先介绍了基于视觉的目标对象检测算法,然后介绍了计算机姿态识别与传感器检测技术,并确定了玉米定向精播种粒品质动态检测方法,进行了实际的测试试验.测试结果表明:基于计算机姿态识别的玉米定向精播种粒品质动态检测准确率在95%以上,精准度较高,符合设计需求,能够实现对玉米定向的精准播种,对玉米种粒的无人化播种具有重要的现实意...  相似文献   
107.
董戈 《农机化研究》2021,43(3):260-264
首先,介绍了水果收获机器人抓取系统的总体架构;然后,利用深度学习对水果目标识别进行了研究,实现了一套基于卷积神经网络的目标检测算法;接着,利用图像处理技术实现了对目标物体定位的功能,可以引导水果收获机器人完成对目标水果的采摘.实验结果表明:水果收获机器人抓取系统对水果坐标的计算误差较小,且具备较强的水果识别和定位能力.  相似文献   
108.
基于多特征降维的植物叶片识别方法   总被引:1,自引:0,他引:1  
植物种类识别方法主要是根据叶片低维特征进行自动化鉴定。针对低维特征不能全面描述叶片信息,识别准确率低的问题,提出一种基于多特征降维的植物叶片识别方法。首先通过数字图像处理技术对植物叶片彩色样本图像进行预处理,获得去除颜色、虫洞、叶柄和背景的叶片二值图像、灰度图像和纹理图像。然后对二值图像提取几何特征和结构特征,对灰度图像提取Hu不变矩特征、灰度共生矩阵特征、局部二值模式特征和Gabor特征,对纹理图像提取分形维数,共得到2 183维特征参数。再采用主成分分析与线性评判分析相结合的方法对叶片多特征进行特征降维,将叶片高维特征数据降到低维空间。降维后的训练样本特征数据使用支持向量机分类器进行训练。试验结果表明:使用训练后的支持向量机分类器对Flavia数据库和ICL数据库的测试叶片样本进行分类识别,平均正确识别率分别为92.52%、89.97%,有效提高了植物叶片识别的正确率。  相似文献   
109.
针对不同分类器对不同水果种类识别准确率的不均衡问题,提出一种基于多分类器DS证据理论融合的水果识别方法.该研究选择kaggle上fruits360数据集中的5种水果作为研究对象,首先对预处理后的5种水果图像的颜色、纹理、形状特征进行提取,分别选用BP神经网络、K均值、SVM三种分类器,结合被测图像在每种分类器上的识别结...  相似文献   
110.
为实现加工车间刺梨果实的快速识别,提出一种基于改进的RetinaNet刺梨果实图像的识别方法。基于RetinaNet的模型,对RetinaNet框架中Focal loss的bias进行改进,使其能根据不同的情况控制bias的取值,再运用维度聚类算法找出Anchor的较好尺寸并匹配到相对应的特征层,对卷积神经网络结构进行优化。通过改进RetinaNet目标检测算法对7426幅刺梨果实图像进行检测识别,并与原始RetinaNet目标检测算法对比。试验结果表明:改进的RetinaNet网络模型识别方法对6类刺梨果实的识别率分别为99.47%、91.42%、96.92%、90.92%、96.89%和93.53%,平均识别率为94.86%;相对于原始RetinaNet目标检测算法,改进算法的识别准确率提高4.21%,单个刺梨果实检测时间由60.99 ms缩减到57.91 ms,检测时间缩短5.05%。本文改进算法对加工车间刺梨果实的识别具有较高的正确率和实用性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号