首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14481篇
  免费   768篇
  国内免费   1924篇
林业   540篇
农学   1352篇
基础科学   529篇
  5613篇
综合类   5555篇
农作物   1022篇
水产渔业   488篇
畜牧兽医   1231篇
园艺   233篇
植物保护   610篇
  2024年   140篇
  2023年   430篇
  2022年   676篇
  2021年   732篇
  2020年   763篇
  2019年   787篇
  2018年   638篇
  2017年   897篇
  2016年   1005篇
  2015年   742篇
  2014年   774篇
  2013年   1251篇
  2012年   1255篇
  2011年   994篇
  2010年   784篇
  2009年   748篇
  2008年   555篇
  2007年   655篇
  2006年   564篇
  2005年   463篇
  2004年   348篇
  2003年   283篇
  2002年   212篇
  2001年   191篇
  2000年   160篇
  1999年   147篇
  1998年   113篇
  1997年   105篇
  1996年   107篇
  1995年   153篇
  1994年   67篇
  1993年   85篇
  1992年   70篇
  1991年   60篇
  1990年   48篇
  1989年   49篇
  1988年   40篇
  1987年   27篇
  1986年   19篇
  1985年   7篇
  1984年   6篇
  1983年   6篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1973年   1篇
  1962年   4篇
排序方式: 共有10000条查询结果,搜索用时 10 毫秒
841.
Abstract

In two experiments timothy plants (Phleum pratense L., cultivars ‘Bodin’ and ‘Grindstad’, well established and vernalized in the first experiment and 7 weeks old in the second) were given daylength treatments with 12 h of photosynthetically active radiation (PAR) and day-lengthening light of low irradiance for from 2 to 13 weeks. Significant daylength effects on dry-matter, total nitrogen, nitrate and soluble protein content in the leaves of plants were demonstrated after only two weeks of treatment. The nitrogen and protein content decreased with increasing daylength, irrespective of the developmental stage of the plants. The dry-matter content increased with daylength when long days had induced generative development and decreased when all treatments at the same harvest were vegetative. The total nitrogen and protein per plant did not decrease from short to long days. The lower nitrogen and protein content in long days can therefore be regarded as a dilution caused by the increased dry-matter production found in these treatments. The observed effects of daylength on the ratio of assimilated nitrogen to assimilated carbon might be direct or indirect, since long days induce both enhanced dry-matter production and generative development in Bodin and Grindstad.  相似文献   
842.
A glasshouse study was undertaken to investigate the effects of the copper fungicide Kocide 101 and its residues in soil on the growth, nodulation and nitrogen fixation of beans (Phaseolus vulgaris L.). The soil used was a sandy clay loam classified as Typic Rhodustalf. The bean variety SUA 90 was used as test crop. The bean rhizobia strains CIAT 899, PV, and a local isolate were used. Kocide 101 applied at the recommended rate (equivalent to 1.7 mg kg‐1 soil) had no significant negative effects on the growth, nodulation or nitrogen fixation of bean plants. Higher levels of Kocide 101 significantly (P < 0.05) reduced plant growth, nodulation and nitrogen fixation. The bean plants inoculated with the “local isolate”; rhizobia had the highest dry matter weights, nodule numbers and nodule dry weights, and also had more N fixation. They were followed by those inoculated with the PV, strain and, lastly, those inoculated with CIAT 899. The growth and nodulation of bean plants were still curtailed by the Kocide 101 residues four months after the fungicide was first applied to the soil. Therefore, occurrence of high levels of Kocide 101 in soils can have long‐term effects on the performance of the bean‐rhizobia symbiosis.  相似文献   
843.
《Journal of plant nutrition》2013,36(12):1995-2007
Uptake of the two forms of nitrogen NO3 ? and NH4 + and nitrate reduction have been studied in two varieties of Moroccan wheat seedlings, cvs. Sais and Jouda, cultivated under controlled conditions in a hydroponic medium. The available form of nitrogen in the medium had a direct effect on the rate of nitrogen absorption. A brief nitrogen starvation increased the root length and stimulated accumulation of soluble carbohydrates, especially in the root tissues. A resupply of nitrogen stimulated ammonium and nitrate uptake and assimilation with higher mobilization of the soluble carbohydrates previously accumulated in root seedlings. It is suggested that root nitrogen and carbohydrate status might both regulate nitrate uptake and reduction in Moroccan wheat seedlings.

The seedlings raised with the nitrate supply accumulated nitrate in the vacuole as an osmoticum. Shoots are the preferential site for such accumulation. The accumulation of mineral nitrogen was absent in the seedlings cultivated with ammonium supply but was compensated by accumulation of soluble organic nitrogen.  相似文献   
844.
The response of a salt‐tolerant line ILL 6793 and a salt‐sensitive line ILL 6439 of lentil (Lens culinaris) to N deficiency was studied in a pot experiment under glasshouse conditions. Plants of the two lines were treated with 56, 28, 14 and 7 mg N L?1 in Rorison's nutrient solution. The salt‐tolerant line excelled the salt‐sensitive line in relative biomass production (per cent of control basis) under varying N regimes. Of the various physiological/biochemical variables measured in the present study only chlorophyll b and total soluble sugars proved to be helpful in discriminating the lines. Chlorophyll b was significantly greater in ILL 6793 as compared with ILL 6439 at the two lower N levels. Total soluble sugars increased consistently in both lines with decrease in N level of the growth medium and the salt‐tolerant line ILL 6793 had significantly greater soluble sugars than the salt‐sensitive ILL 6439 at 28 and 14 mg N L?1. Chlorophyll a and free amino acids were uniformly reduced in both lines with decrease in N levels. The salt‐tolerant line showing high efficiency for N utilization could be of great economic value in terms of its use in salt‐affected soils which are usually deficient in N provided it also produces reasonable grain yield.  相似文献   
845.
Nitrogen (N) deposition can affect grassland ecosystems by altering biomass production, plant species composition and abundance. Therefore, a better understanding of the response of dominant plant species to N input is a prerequisite for accurate prediction of future changes and interactions within plant communities. We evaluated the response of seven dominant plant species on the Tibetan Plateau to N input at two levels: individual species and plant functional group. This was achieved by assessing leaf N : P stoichiometry, leaf δ15N and biomass production for the plant functional groups. Seven dominant plant species—three legumes, two forbs, one grass, one sedge—were analyzed for N, P, and δ15N 2 years after fertilization with one of the three N forms: NO$ _3^- $ , NH$ _4^+ $ , or NH4NO3 at four application rates (0, 7.5, 30, and 150 kg N ha–1 y–1). On the basis of biomass production and leaf N : P ratios, we concluded that grasses were limited by available N or co‐limited by available P. Unlike for grasses, leaf N : P and biomass production were not suitable indicators of N limitation for legumes and forbs in alpine meadows. The poor performance of legumes under high N fertilization was mainly due to strong competition with grasses. The total above‐ground biomass was not increased by N fertilization. However, species composition shifted to more productive grasses. A significant negative correlation between leaf N : P and leaf δ15N indicated that the two forbs Gentiana straminea and Saussurea superba switched from N deficiency to P limitation (e.g., N excess) due to N fertilization. These findings imply that alpine meadows will be more dominated by grasses under increased atmospheric N deposition.  相似文献   
846.
Efficient use of nitrogen (N) by wheat crop and hence prevention of possible contamination of ground and surface waters by nitrates has aroused environmental concerns. The present study was conducted in drainage lysimeters for three years (1998–2000) to identify whether spring wheat genotypes (Triticum aestivum L.) that differ in N-related traits differ in N leaching and to relate parameters of N use efficiency (NUE) with parameters of N leaching. For this reason two spring wheat cultivars (‘Albis’ and ‘Toronit’) and an experimental line (‘L94491’) were grown under low (20 kg N ha?1) and ample N supply (270 kg N ha?1). The genotypes varied in parameters of NUE but not in N leaching. Grain yield of the high-protein line (‘L94491’) was, on average, 11% lower than that of ‘Toronit’ but among genotypes had significantly higher N in the grain (%), grain N yield, and N harvest index. Nitrogen lost through leaching was considerably low (0.42–0.52 g m?2) mainly due to low volume of percolating water or the ability of the genotypes to efficiently exploit soil mineral N. There were no clear relationships between N-related genotype traits and N leaching, but across all treatments significantly negative correlations between volume of leachate and the amount of N in the total biomass and grain N yield existed.  相似文献   
847.
在红壤自然状况下,模拟了施肥沟,对红壤不同污泥施肥处理的N素释放特性进行了研究。试验结果表明,干污泥配比在10%~20%时,碱解氮、铵态氮和硝态氮累计释放量分别为:25.71%~33.48%,9.57%~14.85%和4.08%~7.65%。堆肥污泥配比在20%~33%时,其累计释放量分别为13.55%~15.65%,2.03%~4.23%和3.11%~5.37%。干污泥处理的释放量大于堆肥污泥处理的释放量,释放过程变化较堆肥污泥剧烈,铵态氮和硝态氮均有明显峰值,铵态氮最大含量532.98±10 mg/kg,释放量最大达10.95%;硝态氮含量最大为149.2±14 mg/kg,释放量最大时为3.32%。无论是从氮的肥效角度,还是氮释放的环境风险角度考虑,污泥堆肥处理后施肥方式均优于干污泥处理施肥方式。  相似文献   
848.
The importance of soil aggregation in determining the dynamics of soil organic carbon (SOC) during erosion, transportation and deposition is poorly understood. Particularly, we do not know how aggregation contributes to the often-observed accumulation of SOC at depositional sites. Our objective was to assess how aggregation affects SOC stabilization in comparison to interactions of SOC with minerals. We determined and compared aggregate size distributions, SOC distribution in density fractions, and lignin-derived phenols from aggregated soil samples at both eroding and depositional sites. The stabilization effect of aggregation was quantified by comparing mineralization from intact and crushed macro-aggregates. Deposition of eroded soil material resulted in carbon (C) enrichment throughout the soil profile. Both macro-aggregate associated SOC and C associated with minerals (heavy fraction) increased in their importance from the eroding to the depositional site. In the uppermost topsoil (0–5 cm), SOC mineralization from intact aggregates was larger at the depositional site than at the eroding site, reflecting the large input of labile organic matter (plant residues) promoting aggregation. Contrastingly, in the subsoil, mineralization rates were lower at the depositional site because of effective stabilization by interactions with soil minerals. Aggregate crushing increased SOC mineralization by 10–80% at the eroding site, but not at the depositional site. The content of lignin-derived phenols did not differ between eroding and depositional sites in the topsoil (24.6–30.9 mg per g C) but was larger in the subsoil of the eroding site, which was accompanied by higher lignin oxidation. Lignin data indicated minor effects of soil erosion and deposition on the composition of SOC. We conclude that SOC is better protected in aggregates at the eroding than at the depositional site. During transport disaggregation and consequently SOC mineralization took place, while at the depositional site re-aggregation occurred mainly in the form of macro-aggregates. However, this macro-aggregation did not result in a direct stabilization of SOC. We propose that the occlusion of C inside aggregates serves as a pathway for the eroded C to be later stabilized by organo-mineral interaction.  相似文献   
849.
采用土培盆栽试验,以小黑麦氮高效利用品种‘Clxt82’、‘PI429186’和氮低效利用品种‘Clxt74’为材料,研究0(不施氮)、0.033 g(N)·kg-1(低氮)和0.066 g(N)·kg-1(正常氮)3个不同施氮水平下,各生长时期氮素在器官间和器官内不同功能性氮素分配的特性。结果表明:氮高效利用品种在氮素不足的条件下优势更明显,抽穗期高效利用品种和低效利用品种间生物量的差异随施氮量的增加而减小,在不施氮、低氮和正常供氮时‘Clxt82’、‘PI429186’地上部生物量分别为‘Clxt74’的1.55倍、1.19倍、1.06倍和1.79倍、1.35倍、1.30倍。不同生育时期,小黑麦氮积累量均随施氮量的增加而显著增加,低氮和正常供氮处理,在分蘖期、拔节期氮高效利用品种氮积累量均显著高于低效利用品种,而在抽穗期差异则不大。随施氮量的增加,氮素在叶片和穗部的分配比例减小,在茎的分配比例增大;分蘖期和拔节期,氮高效利用品种茎中氮素分配比例小于低效利用品种,叶片氮素分配比例则大于低效利用品种。抽穗期氮高效利用品种穗部氮素分配比例大于低效品种,而叶部则相反。各生育时期各器官不同形态氮素含量总体上随施氮量的增加而增加。不施氮和低氮处理,拔节期氮高效品种‘Clxt82’、‘PI429186’叶片营养性氮含量是低效品种‘Clxt74’的1.31倍、1.76倍和1.12倍、1.35倍,而结构性氮含量则是低效品种的86.12%、64.01%和80.82%、71.51%;抽穗期氮高效品种‘Clxt82’、‘PI429186’叶片营养性氮含量是低效品种‘Clxt74’的1.01倍、1.11倍和1.04倍、1.13倍,结构性氮含量为低效品种‘Clxt74’的74.99%、63.08%和75.78%、62.84%;各时期品种间功能性氮素含量差异不大。低氮条件下氮高效利用品种通过降低结构性氮素含量、增加营养性氮素含量来满足氮素的利用和体内循环。  相似文献   
850.
Acid deposition is widely recognized as one of the most serious international atmospheric pollution problems. East Asian countries are currently experiencing acid deposition and have only recently begun expanding domestic research and monitoring activities. However, acid deposition is not only a domestic but also a transboundary problem. In addressing the transboundary aspect, cooperative and collaborative action will be essential. The Environment Agency of Japan is advocating the need to establish an acid deposition monitoring network in East Asia. Therefore, it is sponsoring three Expert Meetings on Acid Precipitation Monitoring Network in East Asia between 1993 and 1995. The meetings are attended by both scientific researchers and government officials from numerous East Asian countries. At the administrative and scientific discussions of the first two meetings a consensus on the desirability of establishing a monitoring network in East Asia was obtained and a preliminary technical guideline manual for monitoring acid deposition was adopted. By the end of the third meeting it is hoped that a basic consensus can be reached on a framework for an East Asian acid deposition monitoring network. It is essential to establish such a network in order to evaluate the present state of acid deposition in the region and to reach a common scientific understanding on the acid deposition problem. This is a vital step toward promoting international cooperation on the issue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号