Dothistroma needle blight, one of the most important foliar diseases of Pinus spp., is caused primarily by the fungus Dothistroma septosporum (Dorog.) Morelet, and to a lesser extent by Dothistroma pini Hulbary. The potential distribution and abundance of Dothistroma spp. was determined by (i) developing a process-oriented model of potential distribution of Dothistroma spp. from known locations, (ii) compiling a comprehensive list of susceptible host species from existing scientific literature and (iii) determining the distribution of susceptible hosts in areas predicted to be suitable for range expansion of Dothistroma spp. Using these three sources of information regions at risk were identified as those that were predicted to be suitable for range expansion by Dothistroma spp. and included significant areas of susceptible host species. 相似文献
Phytophthora pluvialis and Phytophthora kernoviae are the causal agents of important needle diseases on Pinus radiata in New Zealand. Little is known about the epidemiology of the diseases, making the development of control strategies challenging. To investigate the seasonality and climatic drivers of sporulation, inoculum traps, consisting of pine fascicles floating on water in plastic containers, were exchanged fortnightly at five sites in P. radiata plantations between February 2012 and December 2014. Sections of needle baits were plated onto selective media and growth of Phytophthora pluvialis and P. kernoviae recorded. To explore the generalizability of these data, they were compared to detection data for both pathogens from the New Zealand Forest Health Database (NZFHDB). Further, equivalent analyses on infection of Rhododendron ponticum by P. kernoviae in Cornwall, UK allowed the comparison of the epidemiology of P. kernoviae across different host systems and environments. In New Zealand, inoculum of P. pluvialis and P. kernoviae was detected between January–December and March–November, respectively. Inoculum of both species peaked in abundance in late winter. The probability of detecting P. pluvialis and P. kernoviae was greater at lower temperatures, while the probability of detecting P. pluvialis also increased during periods of wet weather. Similar patterns were observed in NZFHDB data. However, the seasonal pattern of infection by P. kernoviae in the UK was the opposite of that seen for sporulation in New Zealand. Phytophthora kernoviae was likely limited by warmer and drier summers in New Zealand, but by colder winter weather in the UK. These results emphasize the importance of considering both environmental drivers and thresholds in improving our understanding of pathogen epidemiology. 相似文献
The impacts of thinning, fertilization and crown position on seasonal growth of current-year shoots and foliage were studied in a 13-year-old loblolly pine (Pinus taeda L.) plantation in the sixth post-treatment year (1994). Length of new flushes, and their needle length, leaf area, and oven-dry weight were measured in the upper and lower crown from March through November. Total shoot length was the cumulative length of all flushes on a given shoot and total leaf area per shoot was the sum of leaf areas of the flushes.
By the end of June, first-flush foliage reached 70% of the November needle length (14.3 cm) and 65% of the final leaf area (15.0 cm2). Cumulative shoot length of first- and second-flush shoots achieved 95% of the annual length (30.3 cm), whereas total leaf area per shoot was 55% of the final value (75.3 dm2). Fertilization consistently stimulated fascicle needle length, dry weight, and leaf area in the upper crown. Mean leaf area of upper-crown shoots was increased by 64% six years after fertilization. A significant thinning effect was found to decrease mean leaf area per shoot in the crown. For most of the growing season, the thinned-fertilized trees produced substantially more leaf area per shoot throughout the crown than the thinned-nonfertilized trees. These thinned-fertilized trees also had greater needle length and dry weight, longer first flush shoots, and more leaf area per flush than trees in the thinned-nonfertilized plots. Needle length and leaf area of first flush shoots between April and July were linearly related to previous-month canopy air temperature (Ta). Total shoot length strongly depended on vertical light gradient (PPFD) within the canopy, whereas shoot leaf area was a function of both PPFD and Ta. Thus, trees produced larger and heavier fascicles, more and longer flush shoots, and more leaf area per shoot in the upper crown than the lower crown. We conclude that thinning, fertilization, and crown position regulate annual leaf area production of current-year shoots largely by affecting the expansion of first flush shoots and their foliage during the first half of the growing season. 相似文献
Sepsis of the calcaneal bursae (CB) presents significant treatment challenges with limited clinical data available in the literature. The objective of this retrospective cohort study was to assess the clinical outcomes associated with CB lavage using either a through-and-through needle or bursoscopic technique. Clinical records of 29 horses treated for septic calcaneal bursitis using either technique between 2005 and 2019 were reviewed. Fisher’s exact test was used to assess statistical significance between first surgical technique and success at first surgery (i.e. not requiring >1 lavage), survival to discharge and return to work (RTW). Bursoscopy was performed in 13/29 (44.8%) cases, and needle lavage in 16/29 (55.2%). In the needle group, 12 (75%) horses were discharged following the first surgery. Four had repeat interventions; two (12.5%) had needle lavage and two (12.5%) had bursoscopy. Of the two horses to have repeat needle lavage, one was subjected to euthanasia and one discharged, and of the two that underwent bursoscopy, one was discharged and one received a third bursoscopy prior to discharge. In the bursoscopy group, seven (53.8%) were discharged and three (23.1%) were subjected to euthanasia following the first surgery. Three (23.1%) received a second bursoscopic lavage with one discharged, one subjected to euthanasia and one having a third bursoscopic lavage prior to discharge. Overall, 18/24 (75%) followed up cases RTW, 10 (55.5%) from the needle group, eight (44.4%) the bursoscopy group. No statistically significant differences between first surgical technique used and success at first surgery (no subsequent lavage(s) required), survival to discharge or return to work were detected. The main limitations of this study are that it is a retrospective study, has a small population with limited statistical power and potential selection bias. No statistically significant differences existed between the outcomes of the two techniques, contrary to the belief that bursoscopic lavage is superior. Larger, multicentred studies, with greater statistical power are required to further assess this relationship. 相似文献
We used the needle trace method to investigate changes in the state of a Scots pine (Pinus sylvestris L.) stand in a bog (Voorepera) in the north-eastern part of Estonia, the most polluted area of the country. Additionally, we chose six sampling sites in other parts of Northeast Estonia (polluted area) and eight sites in southern Estonia (unpolluted area) to compare the state of pine stands in different bogs. During the period of 1964–1997, the radial growth had increased from 0.27 to 2.16 mm yr–1 and the annual shoot length from 0.10 to 0.28 m in Voorepera. Mean values of the period (1.13 mm yr–1 and 0.26 m, respectively) were two and four times higher in Voorepera than the average of the other bogs (0.5 mm yr–1 and 0.06 m, respectively). Maximum needle age fluctuated between three and five growing seasons in Voorepera, the mean (four growing seasons) was similar to that of other bogs (four growing seasons). Except radial growth, which was 0.6 mm yr–1 in the polluted area and 0.4 mm yr–1 in the unpolluted area, other indices of trees' health (shoot growth, needle age, nitrogen concentration in needles) and substrate conditions (water pH and N concentration) did not show clear differences between polluted and unpolluted areas. We conclude that air pollution from oil shale industry (thermal power plant and chemical factories) enhances the growth of pines in bogs, which can induce drastic changes in these ecosystems. However, the effect is currently obvious only in the vicinity of pollution sources. 相似文献