首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1536篇
  免费   60篇
  国内免费   77篇
林业   60篇
农学   96篇
基础科学   49篇
  559篇
综合类   502篇
农作物   68篇
水产渔业   77篇
畜牧兽医   202篇
园艺   27篇
植物保护   33篇
  2024年   15篇
  2023年   29篇
  2022年   36篇
  2021年   55篇
  2020年   52篇
  2019年   63篇
  2018年   46篇
  2017年   75篇
  2016年   62篇
  2015年   55篇
  2014年   51篇
  2013年   217篇
  2012年   140篇
  2011年   71篇
  2010年   57篇
  2009年   53篇
  2008年   54篇
  2007年   67篇
  2006年   53篇
  2005年   36篇
  2004年   40篇
  2003年   40篇
  2002年   19篇
  2001年   35篇
  2000年   24篇
  1999年   32篇
  1998年   22篇
  1997年   14篇
  1996年   25篇
  1995年   18篇
  1994年   15篇
  1993年   12篇
  1992年   22篇
  1991年   12篇
  1990年   15篇
  1989年   8篇
  1988年   10篇
  1987年   7篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
  1975年   6篇
  1974年   1篇
排序方式: 共有1673条查询结果,搜索用时 0 毫秒
51.
Barley plants were grown hydroponically at two levels of K (3.0 and 30 mm) and Fe (1.0 and 10 μm) in the presence of excess Mn (25 μm) for 14 d in a phytotron. Plants grown under adequate K level (3.0 mm) were characterized by brown spots on old leaves, desiccation of old leaves, interveinal chlorosis on young leaves, browning of roots, and release of phytosiderophores (PS) from roots. These symptoms were more pronounced in the plants grown under suboptimal Fe level (1.0 p,M) than in the plants grown under adequate Fe level (10 μm). Plants grown in 10 μm Fe with additional K (30 mm) produced a larger amount of dry matter and released less PS than the plants grown under adequate K level (3.0 mm), and did not show leaf injury symptoms and root browning. On the other hand, the additional K supply in the presence of 1.0 μM Fe decreased the severity of brown spots, prevented leaf desiccation, and increased the leaf chlorophyll content, which was not sufficient for the regreening of chlorotic leaves. These results suggested that the additional K alleviated the symptoms of Mn toxicity depending on the Fe concentration in the nutrient solution. The concentration (per g dry matter) and accumulation (per plant) of Mn in shoots and roots of plants grown in 10 μm Fe and 30 mm K were much lower than those of the plants grown in 10 μm Fe and 3.0 mm K, indicating that additional K repressed the absorption of Mn. The concentration and accumulation of Fe in the shoots and roots of the plants grown in 10 μm Fe and 30 mm K were higher than those of the plants grown in 10 μm Fe and 3.0 mm K, indicating that the additional K increased the absorption of Fe under excess Mn level in the nutrient solution. The release of PS, chlorophyll content, and shoot Fe concentration were closely correlated.  相似文献   
52.
[目的] 开展在混凝土中复掺纳米二氧化硅、微硅粉、聚丙烯纤维等材料,增强工程耐磨性的试验研究,探讨复掺材料掺量变化影响抗冲磨强度的规律,旨在为泥石流防护工程建设中抗冲磨混凝土的配合比设计提供科学参考。[方法] 采用正交试验设计的水下钢球法对混凝土试件进行水下冲磨试验,得出了复掺纳米二氧化硅、微硅粉、聚丙烯纤维的混凝土试件的抗冲磨强度。[结果] 在选定的掺量范围内,混凝土试件的抗冲磨强度随纳米二氧化硅的增加先增大再减小,在掺量为1.5%时达到最大值;随微硅粉的增加而增大,在掺量为12%时达到最大值;随聚丙烯纤维的增加先减小再增大,在掺量为1.8 kg/m3时达到最大值;随着引气剂的增加先减小再增大,在掺量为0.005%时达到最大值。[结论] 影响混凝土抗冲磨性能最为显著的因素是纳米二氧化硅掺量,其次是聚丙烯纤维,再次是微硅粉,最后是引气剂。  相似文献   
53.
钙盐诱导下土壤锰和铁的释放及其对胡椒的生物有效性   总被引:9,自引:7,他引:9  
Releases of manganese and iron ions from an albic soil (Albic-Udic Luvisol), a yellow-red soil (Hap-Udic Ferrisol) and a yellow-brown soil (Arp-Udic Luvisol) induced by calcium salt addition and their bioavailability to pepper (Capsicum frutescens L.) were studied in a pot experiment. Addition of Ca(NO3)2 decreased soil pH and increased both exchangeable and DTPA (diethylenetriamine pentaacetic acid)-extractable Mn and Fe in soils. Meanwhile, total Mn accumulation in the shoots of Capsicum frutescens L. on the salt-treated soils increased significantly (P< 0.01) compared with the control, suggesting that salt addition to soil induced Mn toxicity in Capsicum frutescens L. Although exchangeable and DTPA-extractable Fe increased also in the salt-treated soils, Fe uptake by the shoots of Capsicum frutescens L. decreased. The effect of added salts in soils on dry matter weight of pepper varied with the soil characteristics, showing different buffer capacities of the soils for salt toxicity in an order of yellow-brown soil > albic soil > yellow-red soil. Fe/Mn ratio in shoots of Capsicum frutescens L. decreased with increasing salt addition for all the soils, which was ascribed to the antagonistic effect of Mn on Fe accumulation. The ratio of Fe/Mn in the tissue was a better indicator of the appearance of Mn toxicity symptoms than Mn concentration alone.  相似文献   
54.
富铁水稻研究进展   总被引:10,自引:4,他引:10  
本文简述了水稻品种间铁含量的差异性及其遗传控制,综述了采取提高铁绝对含量及增加其生物有效性开展富铁水稻的研究进展,包括常规育种、诱变育种、转基因技术。对富铁水稻研究中存在的问题及诱变技术在该方面的应用前景也作了探讨。  相似文献   
55.
植物吸收和转运铁的分子生理机制研究进展   总被引:5,自引:2,他引:5  
铁是植物正常生命活动过程中的必需微量元素之一。由于土壤中铁的有效性很低,导致植物极易缺铁,不仅影响作物的产量和品质,而且影响人类微量元素健康,因此如何通过生物强化达到人类铁营养状况改善的目的是目前该研究领域关注的热点。本文就近5年来植物铁吸收、体内转运、子粒中积累等重要生物过程的分子生理机制的研究进展进行了详细阐述,其中对水稻兼备机理I和机理II铁吸收机制有了新的认识,而且发现YSL蛋白家族在植物铁吸收、转运和子粒积累过程中的重要性。同时,讨论了利用上述机制的研究结果通过基因工程和农学措施改善植物铁营养和提高作物子粒铁富集的技术途径。  相似文献   
56.
Abstract

Cadmium in solution culture at 10‐4 M decreased Mn concentrations in bush beans (Phaseolus vulgaris L. C.V. Improved Tendergreen) at both low and high concentrations of Mn (noncompetitive inhibition). When Mn was decreased, the concentrations of Fe and several other ions were simultaneously increased, particularly in leaves and roots. Toxicity due to the 10‐6 M Cd and the 10‐4 M Mn was additive in the experiment. When barley (Hordeum vulgare L. Atlas57)was grown in amended soil, 15μg Fe as DTPA (diethylene triamine pentaacetic acid) per g soil resulted in increased uptake of Cd and in somewhat greater yield depression for soil pH of 3.9, 6. 0, and 7.6. Acidification of soil without DTPA also increased Cd uptake to high levels with associated yield decrease. The Cd decreased the uptake of Mn and Cu most when CaCO3 had also been added to the soil. When salts were added to soil with Cd before bush beans were grown, KCl (200 μg K/g soil), and equivalent KH2PO4 increased Cd concentrations of leaves while CaSO4 and KCl did so for roots. In bush beans with different levels of Cd and Zn, there were no yield interactions, but some interactions of Cd on Zn concentrations in leaves, stems, and roots at the high Zn level.  相似文献   
57.
Nitrogen (N) is critical for micronutrient biofortification in wheat grain and is essential for a series of nitrogenous compounds biosynthesis. This study aims to assess the role of improved N supply in iron (Fe) and zinc (Zn) enrichment and expression of genes related to Zn and Fe chelation and transport in winter wheat. Potting and hydroponic culture experiments were conducted to study the effect of increasing N application on Zn and Fe uptake and translocation from roots to leaves and the temporal and spatial gene expression profiles of the NICOTIANAMINE SYNTHASE (NAS) genes in wheat. Plants were grown with low, medium and high N supply levels. The results showed that higher N application increased Fe and Zn content in leaves, and decreased Fe and Zn content in root compared with the lower N supply. High N application also increased the distribution of Fe and Zn from roots to leaves. Expression analysis showed that increased N application resulted in up-regulation of two wheat NAS genes, TaNAS1 and TaNAS2. Highly positive response between NAS genes and increasing N application indicated that abundance nicotianamine (NA) resulted from highly expressed NAS genes might involve in the chelation of Fe and Zn in the phloem and favor Fe and Zn uptake and accumulation in wheat leaves.  相似文献   
58.
Abstract

Stimulatory effects of humic substances (HS) on plant growth have been observed and widely documented. Studies have often shown positive effects on seed germination, root initiation and total plant biomass. The consistency of these observations has been uncertain, predominantly due to the lack of understanding of the plant growth promotion mechanism. Often these effects have been attributed to a direct effect of plant growth hormones; whereas in other instances the term “hormone-like activity” has been used to describe the plant growth stimulation (Chen and Aviad, Humic Substances in Soil and Crop Sciences: Selected Readings, American Society of Agronomy, Soil Science Society of America, 1990; Nardi et al., Humic Substances in Terrestrial Ecosystems, Elsevier Science B.V., 1996). Yet, investigators have been unable to prove that plant growth regulators are present in HS preparations, or the evidence provided remains unconvincing. An alternative hypothesis suggesting that growth enhancement of plants grown in nutrient solution (NS) containing HS is the result of improved micronutrient availability, Fe in particular, has been postulated and tested in the present study. Nutrient solutions containing N, P, K, Ca, Mg, S, B, Mo, Cu, Mn, Zn, and Fe at concentrations considered to be optimal for plant growth were tested for solubility of the Fe, Zn, and Mn, 7 days after preparation. In addition to control solutions at pH values of 5, 6, 7, and 7.5, 0 to 200 mg L?1 of leonardite humic acid (HA) were added to the solutions and they were tested for Fe and Zn solubility. The HA greatly enhanced the maintenance in solution of Fe, in all the tested solutions, and Zn at pH 7.5. Mn mostly remained in solution in its inorganic forms. Plant growth experiments were carried out on both dicotyledonous plants (melons and soybean) and monocotytedonous Poaceae plants (ryegrass), due to the major difference in their Fe uptake mechanism. Plants grown in the absence of Fe exhibited severe Fe deficiency that could only partially be corrected with the addition of mineral Fe salts. The addition of HA or fulvic acid (FA) without addition of Fe, and Zn resulted in partial growth enhancement and correction of Fe deficiency, or none of the two, in the various experiments. This suggests that the growth enhancement effect observed in solutions containing Fe, Zn, and HS was related to the micronutrients rather than to phytohormones. However, the addition of Fe, Zn and either EDTA, HA or FA resulted in healthy, chlorophyll rich plants and enhanced growth, thereby providing evidence that improved Fe, and possibly Zn nutrition is a major mechanism of plant growth stimulation by HS. The use of the term hormone-like activity could be the result of the similarity of the physiological effects obtained in plants enjoying sufficient supply of Fe and Zn.  相似文献   
59.
摘要:铁是水稻花培培养基的重要成分。通过对7份寒地早粳组合F1(或品系)花药在不同Fe2+含量培养基上离体培养,发现培养基中的Fe2+的含量对诱导率、绿苗分化率影响较大。结果表明在N6培养基中将Fe2+提高到32-40mg/kg诱导率最大,高于N6培养基(Fe2+含量为5.6mg/kg)1.4倍以上。在此以内随着Fe2+含量的增加诱导率增加,大于此含量诱导率降低,呈单峰曲线分布。分化培养基中Fe2+含量增加到40mg/kg分化率显著降低。但在32-40mg/kgFe2+培养基上诱导出的愈伤组织在MS培养基上的绿苗分化率差异明显,71.4%材料可使绿苗生产率提高到9.2%左右。因此适当提高诱导培养基中Fe2+含量可提高寒地早粳的花培效率。  相似文献   
60.
以一台低比转速离心泵铸铁叶轮水力模型为原型,将其材质替换为塑料.考虑泵效率提升和注塑工艺可行性对叶轮几何参数进行修改:减小叶轮外径,增加叶轮出口宽度;考虑塑料结构工艺对叶轮结构进行调整:后盖板外侧设置加强筋,轮毂处加铜嵌件,盖板与叶片结合处添加定位孔销和焊接用导熔线。将塑料叶轮和铸铁叶轮安装在同一泵体进行对比测试。测试结果表明:塑料叶轮设计工况点泵的效率由56%提高到60%,增加了4%,既达到国家节能效率指标,又为用户节省了用电费用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号