首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   206篇
  免费   7篇
  国内免费   1篇
林业   3篇
农学   5篇
  176篇
综合类   12篇
农作物   11篇
畜牧兽医   2篇
园艺   2篇
植物保护   3篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   3篇
  2019年   8篇
  2018年   12篇
  2017年   15篇
  2016年   15篇
  2015年   11篇
  2014年   4篇
  2013年   46篇
  2012年   63篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   5篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1996年   2篇
  1990年   2篇
  1989年   1篇
  1983年   1篇
  1980年   1篇
排序方式: 共有214条查询结果,搜索用时 15 毫秒
21.
We evaluated the effects of macronutrient and micronutrient omission, and of liming, on Jatropha curcas (JC) in greenhouse study. The experimental design was a factorial combination of 2 liming treatments (nil or 4.5 t. ha?1 of dolomitic lime) x 7 combinations of fertility status, with five replications. The concentrations and uptake of nutrients by JC plants follow the order: nitrogen > potassium > calcium ≥ Magnesium > sulfur > phosphorus > iron > boron > manganese > zinc > copper (N > K > Ca ≥ Mg > S > P > Fe > B > Mn > Zn > Cu), but the growth of JC plants was negatively affected mainly by omission of macronutrients, in the following order: P > N = K = S, on limed soil. Phosphorus is the most critical element for development. JC is responsive to micronutrients only when applied together with macronutrients. Potassium chloride is not recommended as K+ source for JC crop. Lime is recommended to improve growth and nutritional status of JC plants.  相似文献   
22.
Foliar fertilization may be a viable strategy to boron supply in irrigated cropping systems with common beans (Phaseolus vulgaris), since it prevent B leaching. The aim of this work was to evaluate the economic viability and physiological parameters of the common beans production in irrigated cropping systems using sources and increasing foliar boron doses. A field experiment was carried out using an experimental block design in a factorial scheme 2?×?5?×?3, with two sources of B (boric acid and borax) and five doses: 0 (control), 2, 4, 6 e 8?kg?ha?1, with three repetitions. Foliar B applications were performed at 40 days after seeds germination, in pre-flowering stage. Physiological process (transpiration, stomatal conductance, CO2 internal concentration, net photosynthesis, and relative chlorophyll index), B level in leaves and grain yield were measured. These data were used to determine the economic viability of B fertilization in common beans. Both boric acid and borax increased B levels in common beans leaves. Borax affected some physiological process reducing stomatal conductance and increasing net photosynthesis. Using borax, the highest net photosynthesis was observed at a rate of 4?kg?ha?1, while the boric acid increased net photosynthesis linearly after increasing B doses application. An enhance of 311?kg?ha?1 in the grain yield was observed using borax related to the control (without B application); however, grain yield decreased linearly after application of increasing B doses, as boric acid. Comparing the economic viability of sources and doses of B, the highest profitability is obtained using borax at a rate of 4?kg?ha?1, which promoting a differential profit of US$534.44 per hectare compared to common beans cropping without B.  相似文献   
23.
Desilication and leaching are processes that accompany plinthilization, leading to nutrient depletion. Soils from 12 profiles in a plinthitic landscape were analyzed for extractable micronutrients [iron (Fe), zinc (Zn), manganese (Mn), and copper (Cu)]. Soils of the landscape from crestal to lower‐slope position contain plinthite in the profile, whereas those of the valley floor are devoid of plinthite. The micronutrients were extracted using diethylenetriaminepentaacetic acid (DTPA) and 0.1 M hydrochloric acid (HCl). The results showed that 0.1 M HCl extracted more of the micronutrients than DTPA. The DTPA‐extractable Fe, Zn, Mn, and Cu in all the soils ranged from 1.15 to 12.44 (mean, 3.69); 0.71 to 2.75 (mean, 1.86); trace 12.44 (mean, 3.35), and trace 3.76 (mean, 0.63) mg kg?1, respectively. The DTPA‐extractable micronutrient contents were generally greater than the critical available level (4.5 mg kg?1 for Fe, 0.8 mg kg?1 for Zn, 1.0 mg kg?1 for Mn, and 0.2 mg kg?1 for Cu). The 0.1 M HCl‐extractable micronutrients in the landscape ranged from 8.00 to 30.40 (mean, 15.19); 0.30 to 6.49 (mean, 1.35); 1.00 to 27.20 (mean, 7.74); and 0.26 to 15.0 (mean, 2.77) mg kg?1 for Fe, Zn, Mn, and Cu, respectively. Both DTPA‐ and 0.1 M HCl‐extractable micronutrients were generally lower in the plinthitic horizons than in the nonplinthitic horizons and higher in the Ap than the subsoil horizons. Correlation analysis showed a significant relationship between DTPA‐Fe and DTPA‐Mn, Cu, and organic carbon (r = 0.913**, 0.411**, and 0.385**). There was a significant and positive relationship between 0.1 M HCl‐extractable Mn and organic carbon (C), total nitrogen (N), and available phosphorus (P) (r = 0.413**, 0.337**, and 0.350**, respectively).  相似文献   
24.
Soil properties including micronutrients and their balanced use can significantly affect plant growth and crop production. Hence, the objective of this research was to evaluate the spatial variation of different soil properties including micronutrients in the Dasht-e-Tabriz in the northwest of Iran. Ninety-eight soil sampling sites were selected to collect soil samples from the soil surface layer at a 1000-m distance according to the grid sampling method and analyzed. Soil physical and chemical properties, including the micronutrient concentrations of iron (Fe), copper (Cu), manganese (Mn), and zinc (Zn), were measured. Spatial variabilities of soil properties were determined using the statistical software packages Grow and SPSS. The spatial variabilities of micronutrients in the region were a function of sequenced soil sedimentation, high level of underground water, and the differences in the pedogenesis and hydrological processes. Using such analyses, it is possible to plan appropriate soil management practices, including fertilization.  相似文献   
25.
The Mehlich 3 method for the extraction of available micronutrients, such as copper (Cu), iron (Fe), manganese (Mn), and zinc (Zn), is more advantageous compared to the diethylene triamine pentaacetic acid (DTPA) method, because it can also be used for the extraction of macronutrients. The aim of this study was to compare the Mehlich 3 and DTPA methods for 172 soils in Greece having different levels of pH and calcium carbonate. Single and multiple regression analyses were employed to evaluate the relationship between Mehlich 3 and DTPA tests. Mehlich 3 results correlated well with DTPA-extractable Cu and Zn, but the correlation was poor for DTPA-extractable Mn. Also, a high correlation was found between Mehlich 3 and DTPA-extractable Fe for calcareous soils (R2 = 0.89), while a moderate relationship was found for noncalcareous soils (R2 = 0.65), which was improved to 0.78 when the pH was taken into account in multiple regression analysis.  相似文献   
26.
Dual purpose wheat provides valuable forage resources for cattle in the southern Great Plains during winter. In this study, 96 recombinant inbred lines (RILs) were analyzed for variation in concentrations of 11 mineral elements in leaves. The mean concentration was 133.4 mg kg?1 for manganese (Mn) and 293 mg kg?1 for iron (Fe), being much higher than the 30 mg kg ?1 recommended for each of these two minor mineral elements. Mean concentrations of zinc (Zn) (24.1 mg kg?1) and copper (Cu) (4.4 mg kg?1) were much lower than recommended concentrations. A highly significant correlation was detected between major minerals, magnesium (Mg) and calcium (Ca) (r = 0.9272**) and between minor minerals, Fe and nickel (Ni) (r = 0.8905**). Copper had no significant correlation with any minerals except Zn (r = 0.2529*), whereas Zn had significant correlations with all of the tested minerals except Cu, Mn, and Ni. The interrelations between different minerals provided information for effective selection strategy for ideal mineral concentrations in breeding of dual purpose wheat.  相似文献   
27.
Abstract

Root chicory is mainly grown in Belgium and the Netherlands with production also elsewhere in Europe, India, and South Africa. The world’s crop is worth an estimated US$56.04 million. India and South Africa focus on supplying root chicory to the blend coffee industry. Only limited and variable information is available on the fertilizer requirements of root chicory. Most studies on nitrogen (N) report that chicory in cooler, temperate regions requires 40–75?kg?N/ha compared to 200?kg?N/ha in warmer areas. Recommended rates for phosphorus (P) range from 0 to 69?kg?P/ha. Poor responses to potassium (K) are reported with recommended rates from 0 to 190?kg?K/ha. Application rates for sulfur (S) of 10–30?kg?S/ha have been suggested. Suitable micronutrient requirements and soil acid saturation and pH values for root chicory have not been published. To establish crop norms a concerted effort is needed to quantify the fertilizer use of root chicory.  相似文献   
28.
The detoxification of L. sativus grains by spraying of 0.5 ppm cobalt (nitrate) and 20 ppm molybdehum (ammonium molybdate) salts at the maximun flowering stage ‐ a suggestion based on preliminary findings ‐ has been confirmed in this investigation. Regulatory mechanisms of these micronutrients at the enzymatic level were also studied. On the basis of these observations, the involvement of a hitherto unknown biosynthetic pathway of BOAA cannot be ruled out.  相似文献   
29.
Heavy metal uptake, translocation and partitioning differ greatly among plant cultivars and plant parts. A pot experiment was conducted to determine the effect of cadmium (Cd) levels (0, 45 and 90 mg kg?1 soil) on dry matter yield, and concentration, uptake and translocation of Cd, Fe, Zn, Mn and Cu in seven rice cultivars. Application of 45 mg Cd kg?1 soil decreased root and shoot dry weight. On average, shoot and root Cd concentrations and uptake increased in all cultivars, but micronutrients uptake decreased following the application of 45 mg Cd kg?1. No significant differences were observed between 45 and 90 mg kg?1 Cd levels. On average, Cd treatments resulted in a decrease in Zn, Fe and Mn concentrations in shoots and Zn, Cu and Mn concentrations in roots. Differences were observed in Cd and micronutrient concentrations and uptake among rice cultivars. Translocation factor, defined as the shoot/root concentration ratio indicated that Cu and Fe contents in roots were higher than in shoots. The Mn concentration was much higher in shoots. Zinc concentrations were almost similar in the two organs of rice at 0 and 45 mg Cd kg?1. A higher Cd level, however, led to a decrease in the Zn concentration in shoots.  相似文献   
30.
Soil degradation in the semi-arid tropics (SAT) is mainly responsible for low crop and water productivity. In Madhya Pradesh and Rajasthan states in India, the soil analyses of farmers’ fields revealed widespread deficiencies of S (9–96%), B (17–100%) and Zn (22–97%) along with that of P (25–92%). Soil organic C was deficient in 7–84% fields indicating specifically N deficiencies and poor soil health in general. During on-farm evaluations in rainy seasons 2010 and 2011, the soil test based addition of deficient nutrient fertilizers as balanced nutrition (BN) increased crop yields by 6–40% (benefit to cost ratios of 0.81–4.28) through enhanced rainwater use efficiency. The integrated nutrient management (INM), however, decreased the use of chemical fertilizers in BN by up to 50% through on-farm produced vermicompost and recorded yields at par or more than BN with far better benefit to cost ratios (2.26–10.2). Soybean grain S and Zn contents improved with INM. Applied S, B, Zn and vermicompost showed residual benefits as increased crop yields for succeeding three seasons. Hence, results showed INM/BN was economically beneficial for producing more food, while leading to resilience building of SAT production systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号