首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   206篇
  免费   7篇
  国内免费   1篇
林业   3篇
农学   5篇
  176篇
综合类   12篇
农作物   11篇
畜牧兽医   2篇
园艺   2篇
植物保护   3篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   3篇
  2019年   8篇
  2018年   12篇
  2017年   15篇
  2016年   15篇
  2015年   11篇
  2014年   4篇
  2013年   46篇
  2012年   63篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   5篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1996年   2篇
  1990年   2篇
  1989年   1篇
  1983年   1篇
  1980年   1篇
排序方式: 共有214条查询结果,搜索用时 21 毫秒
101.
The effect of source and sink manipulation on accumulation of micronutrients (Fe, Zn, Mn, Cu) and protein in wheat grains was studied in a field experiment and ear culture. The source and sink manipulation was obtained by reducing assimilate source (through defoliation and spike shading) or sink (through 50% spikelets removal) after anthesis in the field and by changing sucrose or NH4NO3 levels of the culture media in ear culture. In the field experiment, reducing source and sink generally increased Fe, Zn, Mn, Cu, and protein concentrations except defoliation which decreased Mn concentration. Grain yield as well as micronutrient and protein contents in grains were all reduced by reducing source and sink sizes, suggesting that the accumulation of micronutrients and protein in grains was restricted by source supply and sink capacity. In ear culture, the supply of 20 to 80 g L–1 sucrose increased grain weight and yield, but decreased grain Fe, Zn, Mn, Cu, and protein concentrations. The supply of 0.57 to 2.28 g L–1 NH4NO3 increased grain yield and the concentrations and contents of micronutrients and protein. All these results show that micronutrient and protein accumulation in grains can be affected by the source–sink relationship of carbohydrate and nitrogen. Adequate N supply can simultaneously increase grain yield and the accumulation of Fe, Zn, Mn, Cu, and protein.  相似文献   
102.
微量元素对尾叶桉幼林生长的影响   总被引:4,自引:0,他引:4  
为研究桉树的微营养,在花岗岩发育的严重水土流失立地上开展了尾叶桉施肥试验.结果表明:微量元素的缺乏不同程度地影响了尾叶桉的生长,特别是硼素的缺乏.在施用大量元素肥料的同时,硼的添加使得尾叶桉生长显著加快;4.5年生时,全素肥料处理的尾叶桉胸径、树高生长是缺硼处理的230.2%和173.5%.在不添加硼素的情况下,不仅严重影响了生长,同时表现出典型的硼素缺乏症状:枝条组织坏死成肿瘤状,叶腋间可见丛状腋芽,枝条和干型畸形生长.  相似文献   
103.
Abstract

Vertisols of India are developed over isohyets of 600 to 1500 mm, and their chemical cycles are set by drainage, landforms, and particle size, which results in variable pedogenic development within the otherwise homogeneous soils. The purpose of this study was to identify pedogenic processes in the distribution of total and DTPA‐extractable zinc (Zn), copper (Cu), manganese (Mn), and iron (Fe). The soils are developed over basaltic parent material of Cretaceous age. Soil samples were drawn from genetic horizons of the 13 benchmark profiles and analyzed by using HF–HClO4 acid for total and DTPA extraction. Correlation coefficients were calculated taking all samples together. The total concentration varied from 24 to 102 mg kg?1 for Zn, 21 to 148 mg kg?1 for Cu, 387 to 1396 mg kg?1 for Mn, and 2.36 to 9.50% for Fe. Their variability was proisotropic and haplodized, and their concentrations increased with advancing isohyets. Within the isohyets, hindrance in drainage caused retention of Zn and Cu but loss of Fe. The piedmont soils had more Fe than alluvium soils. The spatial distribution of total contents of Zn, Cu, and Fe was influenced by the pedogenic processes associated with Haplusterts but not with provenance materials. Surface concentrations of the elements by biotic lifting and/or harvest removal were negated by the pedoturbation that further contributed to the irregular distribution of the elements in the profiles. Total Zn and total Cu had positive coefficients of correlations with coarse clay, whereas total Mn and total Fe were positively correlated with fine clay. The DTPA‐extractable forms were functions of isohyets and drainage and showed association with organic carbon content and coarse clay.  相似文献   
104.
A greenhouse experiment was conducted in the Department of Soil Science and Agricultural Chemistry, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi (U.P.), India, during kharif 2013 to find out the effect of biochar and sewage sludge (SS) on growth, yield, and micronutrient uptake in rice crop. Nine treatments were employed using six different doses of biochar (2.5, 5.0, 7.5 10, 15, and 20 t ha?1) amended with a fixed dose of SS (30 t ha?1) and 50% recommended dose of nitrogen (50% RDN), i.e., 60 kg ha?1. Other three treatments were absolute control (no fertilizers), 100% recommended dose of fertilizers (100% RDF) which was 120:60:60 kg ha?1 as nitrogen (N): phosphorus pentoxide (P2O5):dipotassium oxide (K2O), and 30 t ha?1SS + 50% RDN. Experimental results showed a significant increase in yield of rice crop with increasing levels of biochar along with SS. Application of biochar at 20 t ha?1 along with 30 t ha?1SS increased grain yield to the extent of 2.5 times over absolute control (no fertilizers) and 8.5% over control (100% RDF). The uptake of iron (Fe), copper (Cu), zinc (Zn), and manganese (Mn) (micronutrients) increased significantly with graded doses of biochar application from 2.5 to 20 t ha?1 in the soil. The maximum micronutrient uptake and grain yield of rice were found in T9 where 30 t ha?1SS along with 20 t ha?1 biochar was applied with only 50% RDN. The maximum availability of micronutrients in soil was found with 30 t ha?1 of SS + 50% RDN (T3) followed by conjoint application of 20 t ha?1 of biochar and 30 t ha?1 SS + 50% RDN (T9).  相似文献   
105.
微量元素对平菇生长的影响   总被引:1,自引:0,他引:1  
试验探讨了不同含量的微量元素对平菇菌丝体和子实体生长特性及其产量的影响。结果显示:0.1~50 ppm的Fe、Cu、Zn对平菇菌丝体和子实体的生长及其产量的形成有较好地促进作用;1~10 ppm的Mo、10~50 ppm的Mn也有促进作用;各含量的B则效果不甚显著。  相似文献   
106.
ABSTRACT

Greenhouse experiments were conducted to assess the effects of salinization of soil on emergence, seedling growth, and mineral accumulation of Prosopis cineraria (Linn.) Druce (Mimosaceae). A mixture of chlorides and sulfates of sodium (Na), potassium (K), calcium (Ca), and magnesium (Mg) was added to the soil and salinity was maintained at 5.1, 7.2, 9.3, 11.5, and 13.3 dS m?1. A negative relationship between seedling emergence and salt concentration was obtained. Seedlings did not emerge when soil salinity exceeded 11.5 dS m?1. Results suggested that this tree species is salt tolerant at seed germination and seedling stages. Elongation of stem and root was retarded by increasing salt stress. Young roots and stem were most tolerant to salt stress, followed by old roots and leaves. Leaf tissue exhibited maximum reduction in dry-mass production in response to increasing salt stress. However, production of young roots and death of old roots were found to be continuous and plants apparently use this process as an avoidance mechanism to remove excess ions and delay onset of ion accumulation in this tissue. Plants accumulated Na in roots and were able to regulate transfer of Na ions to leaves. Stem tissues were a barrier for translocation of Na from root to leaf. Moreover, K decreased in root tissues with increased salinization. Nitrogen (N) content significantly (P < 0.01) decreased in all tissues (leaf, stem, and root) in response to low water treatment and salinization of soil. Phosphorus (P) content significantly (P < 0.01) decreased while Ca increased in leaves as soil salinity increased. Changes in elements-accumulation patterns and the possible mechanisms for avoidance of Na toxicity in tissues and organism level are discussed.  相似文献   
107.
ABSTRACT

Plants of tomato cultivar ‘TITANO M’ were grown under glasshouse conditions, in plastic pots filled with the upper (Ap, Soil A) and the underlying horizons (Bt, Soil B) of an Alfisol from central Greece in a randomized complete block design. Four treatments were utilized: no fertilization and irrigation with distilled water (C), irrigation with wastewater without fertilization (W), complete fertilization (110 kg N ha?1, 150 kg P2O5 ha?1, 150 kg K2O ha?1) and irrigation with distilled water (CF), complete fertilization and irrigation with wastewater (WF) each replicated four times. The results showed that wastewater significantly increased electrical conductivity (EC), exchangeable sodium percentage (ESP), exchangeable magnesium (Mg), and extractable zinc (Zn). A three-fold increase of above ground biomass (AGB) compared to C treatment was recorded in Soil A. Photosynthates allocation to AGB and water use efficiency (WUE) were promoted by effluent application. Wastewater could be a water source for agriculture under water limited conditions substituting partially for inorganic fertilization.  相似文献   
108.
The relationship between the total amount of micronutrients absorbed by the above-ground plant tissue and the occurrence of visible micronutrient deficiency symptoms in two strawberry cultivars as influenced by elevated phosphorus (P) levels in fertigation solution was investigated. The plants were cultured with a fertilizer solution containing 0, 0.5, 1, 2, 4, or 6 mM P and tissue nutrient content were determined at 120 days after transplanting. Young leaves of the plants grown with nutrient solution P levels higher than 4 mM and 2 mM, respectively, in ‘Keumhyang’ and ‘Seonhong’, developed interveinal chlorosis. Tissue concentrations (mg·kg?1 dry weight) of metallic micronutrients [iron (Fe), copper (Cu), manganese (Mn), and zinc (Zn)] in both cultivars did not decrease, but the total amount absorbed by the aboveground plant tissue decreased in the treatments in which nutrient deficiencies were observed. These results indicate that total amount of micronutrients is a better indicator of P-induced micronutrient deficiency.  相似文献   
109.
Secondary and trace elements may be limiting soil microbial functioning, albeit microbial demand and content remain largely unknown and methods for their in situ detection are limited. Thus, the objective of the present study was to take the first step towards the method development for the assessment of the soil microbial ionome, that is, the elemental composition of soil microbial communities. Chloroform (CHCl3) fumigation extraction was used for the detection of microbial CHCl3-labile secondary and trace element concentrations in soils. The suitability of two extractants (NH4NO3, CaCl2) for the quantification of CHCl3-labile concentrations of phosphorus, sulphur, potassium, sodium, and magnesium, as well as selenium, iron, zinc, manganese, copper, cobalt, nickel, molybdenum, vanadium, boron, silicon, barium, arsenic, and cadmium, were tested in six agricultural soils. Additionally, three soil to extractant ratios (1:5, 1:10, and 1:20) and two extraction durations, 1 or 2 h, were tested in a subset of two soils. Out of the two extractants tested, 0.01 M CaCl2 was found to be the best-suited extractant. For CaCl2, a soil-to-extractant ratio of 1:20 with an extraction time of 1 h was best for the majority of elements in the two soils tested. In a limited number of agricultural soils, we were able to show that CHCl3 fumigation extraction can successfully be applied to the elements phosphorus, sulphur, potassium, sodium, magnesium, zinc, manganese, copper, nickel, vanadium, boron, silicon, and barium to yield a CHCl3-labile element fraction. Conversion values to microbial biomass, accounting for elements contained in the cell envelope components, which are mostly not extractable, and to account for adsorption to soil colloids during extraction are yet to be determined in a larger variety of soils. To overcome some of the limitations of the fumigation extraction approach for secondary and trace elements, a pre-extraction step may provide a suitable solution.  相似文献   
110.
Soils of the Brazilian Cerrado biome have been found to be deficient in copper (Cu) and zinc (Zn). In this area, an Oxisol was deeply excavated in 1962 during the construction of a hydroelectrical plant, and the exposed saprolite material was abandoned, without any reclamation measures. The abandoned land was a harsh environment for plant growth, and the secondary vegetation has not recovered. A field trial was established in 1992 to assess the effects of different grass species and lime amendments on soil reclamation at the degraded site. In 2011 soil samples were collected at three depths (0–10, 10–20, and 20–40 cm) from vegetated and bare plots over tilled saprolite, from an untreated area of the saprolite, and from an Oxisol under native forest, used as external reference. Nineteen years after the reclamation effort was begun, the organic carbon (OC) content of the restored saprolite still was much lower than that of the Oxisol under natural vegetation. The undisturbed Oxisol was deficient in extractable Cu (0.16–0.10 mg kg?1) and Zn (0.10–0.02 mg kg?1) and exhibited rather low concentrations of extractable iron (Fe; 5.24–1.47 mg kg?1) and manganese (Mn; 3.21–0.77 mg kg?1). However, the saprolite under reclamation showed even lower levels of these elements compared to the native forest soil. In the natural soil, OC, N, extractable Fe, Mn, and Cu showed stratification, but this was not the case for extractable Zn. Although the reclaimed saprolite still was far from predisturbance conditions, the revegetation treatments promoted recovery of OC, N, Fe, Mn, and Cu at the surface layers, which resulted in incipient stratification. Extractable Fe, Mn, and Cu were correlated to OC, whereas no association between Zn and OC was detected. Our results also suggest that reclamation of the excavated saprolite may be constrained by micronutrient deficiencies and mostly by the extremely low levels of Zn and Cu.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号