首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13894篇
  免费   843篇
  国内免费   1115篇
林业   1012篇
农学   1052篇
基础科学   93篇
  2019篇
综合类   5811篇
农作物   1255篇
水产渔业   905篇
畜牧兽医   1522篇
园艺   519篇
植物保护   1664篇
  2024年   84篇
  2023年   251篇
  2022年   473篇
  2021年   507篇
  2020年   478篇
  2019年   596篇
  2018年   390篇
  2017年   614篇
  2016年   758篇
  2015年   629篇
  2014年   725篇
  2013年   890篇
  2012年   1120篇
  2011年   1112篇
  2010年   1004篇
  2009年   892篇
  2008年   825篇
  2007年   900篇
  2006年   711篇
  2005年   532篇
  2004年   415篇
  2003年   300篇
  2002年   225篇
  2001年   209篇
  2000年   156篇
  1999年   177篇
  1998年   118篇
  1997年   110篇
  1996年   103篇
  1995年   78篇
  1994年   73篇
  1993年   76篇
  1992年   74篇
  1991年   71篇
  1990年   40篇
  1989年   36篇
  1988年   33篇
  1987年   31篇
  1986年   9篇
  1985年   6篇
  1984年   3篇
  1981年   3篇
  1980年   3篇
  1979年   5篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1963年   1篇
  1962年   1篇
  1955年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
水产食品特定腐败菌与货架期的预测和延长   总被引:25,自引:2,他引:25  
杨宪时 《水产学报》2004,28(1):106-111
Fresh fish and lightly preserved fish products are welcome by the global market, however, they are also among the most perishable food products. The research on specific spoilage organisms (SSO) reveals the spoilage process of aquatic product. This paper reviews the current knowledge (past ten years) on SSO of fresh fish and lightly preserved fish products with particular emphasis on characteristics of SSO and how to apply this concept to determine, predict and extend the shelf life of aquatic product. During storage, the microflora changes owing to different abilities of the microorganisms to tolerate the preservation conditions. SSO is defined as special microorganisms which can increase rapidly during preservation and has the ability to produce off- odours and off- flavours associated with spoilage, and spoilage metabolites. Identification of an SSO relies on comparison of the sensory and chemical characteristics of spoiled product with those of isolates from the spoilage microflora. Generally, the SSO of fresh fish may be a single species or genus, but the ones of lightly preserved fish products will be more complex. One exciting area for use of SSO aims to obtain quantitative knowledge about probable behavior of SSO and their function during the progression of spoilage. Thus mathematical models on the growth of SSO are established to evaluate the quality lost degree of product, which provide a sound information for the rational development of devices to monitor loss of products shelf life. Models for the growth of Pseudomonas spp, S. putrefaciens, P. phosphoreum have been established, and validated for shelf life prediction of seafood successfully. Another application field of SSO intends to develop the techniques to prolong the shelf life of food products by inhibiting SSO targetedly. Targeted inhibition of spoilage bacteria during preservation reduces their growth and results in a significant extension of shelf life in despite of the activity of non - spoilage organisms has not been influenced. Such techniques have been applied in perversion field of fresh fish and lightly preserved fish.  相似文献   
952.
温度和pH值对乐清养殖泥蚶蛋白酶的影响   总被引:11,自引:0,他引:11  
应用分光光度计比色法测定了pH值和温度对乐清养殖泥蚶蛋白酶活性的影响。结果表明:乐清养殖泥蚶蛋白酶的最适pH值为2.6和5.8,最适温度为40℃。  相似文献   
953.
The osmoregulation capabilities of juvenile Siberian sturgeon exposed to three experimental osmolalities (22, 250 and 387 mOsmol kg−1) were studied over a 45-day period. Growth performance, haematological parameters, ion concentrations, gill and spiral valve Na+-K+-ATPase activities, as well as gill and spiral valve histology, were measured. At the end of the period, the plasma osmolality of fish kept in 250 and 387 mOsmol kg−1 was higher than that of fish kept in 22 mOsmol kg−1. Similar trends were observed in electrolyte concentrations. Spiral valve and gill Na+-K+-ATPase activity varied with exposure time and environmental salinity. Shortly after being transferred to hyperosmotic media, spiral valve Na+-K+-ATPase activity fell, while gill Na+-K+-ATPase activity remained constant. At the end of the experiment, gill Na+-K+-ATPase activities in fish kept in isosmotic and hyperosmotic media had increased in comparison to those of the control fish. Moreover, spiral valve Na+-K+-ATPase activities recovered and were similar to those recorded in fish kept in hyposmotic environments. Although some of the morpho-physiological mechanisms were operational in juvenile Siberian sturgeon in their adaptation to hyperosmotic media, fish cannot be considered hyperosmotic regulators as they were unable to maintain their plasma osmolality and electrolyte equilibrium in salinities higher than 250 mOsmol kg−1. This suggests that the culture of juvenile Siberian sturgeon in brackish environments is unlikely to be successful. However, our data indicate that in natural environments, juvenile Siberian sturgeon in migratory populations (Ob and Lena Rivers) would be able to migrate successfully into estuarine brackish grounds with a salinity of up to 9%. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
954.
研究光合细菌产氢过程中菌体活性的变化及产氢基质对菌体活性的影响对于揭示光合细菌光合产氢本质,提高光合细菌产氢效率具有重要意义。该文以光合细菌为研究对象,以葡萄糖为产氢基质,研究了产氢基质对光合细菌的生长及产氢活性的影响,分析了产氢过程中菌体生长活性下降的原因,并探讨了产氢基质添加浓度对光合细菌吸收光谱的影响。结果发现,光合细菌利用葡萄糖产氢过程中存在着代谢产酸过程,产生的代谢酸引起菌液的酸化,细胞生长受到酸性条件抑制,菌体活性下降。当底物葡萄糖浓度低于3 mmol/L时,光合细菌不产氢,但菌体吸收光谱特征  相似文献   
955.
本研究以Avicel-刚果红选择培养基为初筛培养基,从云南哀牢山国家级自然保护区和广西猫儿山国家级自然保护区的土壤样品中分离筛选得到4200株真菌,从中筛选出透明圈与菌落直径比较大、透明程度较为清晰的12个菌株。通过液体培养发酵,测定其上清液中的羧甲基纤维素酶活力、滤纸酶活力和Avicel酶活力,最终筛选出一株产该三种酶且其活力均最高的真菌菌株A25-2。通过对菌株A25-2形态学观察和其内转录间隔区(internal transcribed spacer,ITS)序列同源性比对分析,将菌株A25-2鉴定为哈茨木霉(Hypocrea lixii)。酶活测定结果表明菌株A25-2产纤维素酶的酶活力较高,在最适作用pH4.5和最适作用温度55℃下,其羧甲基纤维素酶活力为2.26IU/mL,滤纸酶活力为0.58IU/mL,Avicel酶活力为0.39IU/mL。薄层层析实验表明A25-2具有完整的纤维素酶系统。因此,真菌A25-2可作为饲料加工等生产和纤维素酶相关研究的备选菌株。  相似文献   
956.
本研究从商陆根部提取分离出商陆多糖,并对该多糖含量进行测定及体外抗氧化活性研究。商陆根部经石油醚回流脱脂、热水抽提、脱色、乙醇沉淀等处理可从中提取出粗多糖。多糖经三氯乙酸脱蛋白纯化,再分别以考马斯亮蓝法和蒽酮-硫酸法测定其蛋白质含量和糖含量,并通过采用清除羟自由基和超氧自由基能力测定法、β-胡萝卜素-亚油酸法,以抗坏血酸(Vc)为对照,来分析粗多糖和纯多糖的体外抗氧化能力。采用水提法提取的粗多糖,含有10.69%的蛋白质和60.91%的多糖;纯化后的多糖糖含量达到91.04%。商陆粗多糖、纯多糖及Vc对羟自由基(·OH)清除率的IC50分别是1.26mg/mL、4.78mg/mL和0.224mg/mL;对超氧自由基(O2-·)清除率的IC50分别为1.91mg/mL、2.28mg/mL和0.123mg/mL;对β-胡萝卜素-亚油酸体系的抑制作用的IC50分别为0.471mg/mL、0.692mg/mL和0.379mg/mL。实验结果表明商陆多糖是一种较好的抗氧化剂,可作为潜在天然抗氧化剂应用于食品和医药工业中。  相似文献   
957.
The aim of the present study was to investigate the microbial activity along forest brown soil profiles sequence developed on different lithological substrates (carbonate or non-carbonated cement in sandstone formations) at different altitudes. The main question posed was: does carbonate affect the biochemical activity of brown soil profiles at different altitudes? For the purpose of this study, four soil profiles with different amounts and compositions of SOM developed on different lithological substrates were selected: two with carbonate (MB and MZ) and the other two with non-carbonated cement in the sandstone formations (MF1 and MF2). Chemical and biochemical properties of soil were analysed along soil profiles in order to assess the SOM quantity and quality, namely total organic C (Corg), water extractable organic C (WEOC) and humification indices (HI, DH, HR). Microbial biomass (Cmic and Nmic) content, as well as the specific activities of acid phosphatase, β-glucosidase and chitinase enzymes were chosen as indicators of biochemical activity. The soil biochemical properties provided evidence of better conditions for microorganisms in MB than in MF1, MF2 and MZ soil profiles, since patterns of microbial biomass content and activity might be expected in response to the amount and quality of organic substances. The different lithological substrates did not show any clear effect on soil microbial biomass content, since similar values were obtained in MF1, MF2 (with non-carbonated cement) and MZ (with carbonate). However, the specific activities of acid phosphatase (per unit of Corg and per unit of Cmic) were higher in soils with no carbonate (MF1 and MF2) than in soils with carbonate (MB and MZ). In conclusion, the biochemical activity along brown soil profiles was mainly regulated by different soil organic matter content and quality, while the two different lithological substrates (with carbonate or non-carbonated cement in the sandstone formations) did not show any direct effect on microbial biomass and its activity. However, the activity of acid phosphatase per unit of C was particularly enhanced in soil with non-carbonate cement in the sandstone formations.  相似文献   
958.
This study aimed to reveal differences in the relevance of particulate as well as water-soluble organic matter (OM) fractions from topsoils to the easily biodegradable soil organic matter (SOM). We selected eight paired sites with quite different soil types and soil properties. For each of these sites, we took samples from adjacent arable and forest topsoils. Physically uncomplexed, macro-, and micro-aggregate-occluded organic particle, as well as water-soluble OM fractions were sequentially separated by a combination of electrostatic attraction, ultrasonic treatment, density separation, sieving, and water extraction. The easily biodegradable SOM of the topsoil samples was determined by measuring microbial respiration during a short-term incubation experiment (OCR). The organic carbon (OC) contents separated by i) the physically uncomplexed water-soluble OM, ii) the macro-, and iii) the micro-aggregate-occluded organic particle as well as water-soluble OM fractions were significantly correlated with OCR. The correlation coefficients vary between 0.54 and 0.65 suggesting differences in the relevance of these OM fractions to the easily biodegradable SOM. The strongest correlation to OCR was detected for the OC content separated by the physically uncomplexed water-soluble OM indicating the most distinct relation to the easily biodegradable SOM. This was found to be independent from land use or soil properties.  相似文献   
959.
Peatlands represent massive global C pools and sinks. Carbon accumulation depends on the ratio between net primary production and decomposition, both of which can change under projected increases of atmospheric CO2 and N deposition. The decomposition of litter is influenced by 1) the quality of the litter, and 2) the microenvironmental conditions in which the litter decomposes. This study aims at experimentally testing the effects of these two drivers in the context of global change. We studied the in situ litter decomposition from three common peatland species (Eriophorum vaginatum, Polytrichum strictum and Sphagnum fallax) collected after one year of litter production under pre-treatment conditions (elevated CO2: 560 ppm or enhanced N: 3 g m−2 y−1 NH4NO3) and decomposed the following year under treatment conditions (same as pre-treatment). By considering the cross-effects between pre-treatments and treatments, we distinguished between the effects on mass loss of 1) the pre-treatment-induced litter quality and 2) the treatment conditions under which the litters were decomposing. The combination between CO2 pre-treatment and CO2 treatment reduced Polytrichum decomposition by −24% and this can be explained by litter quality-driven decomposition changes brought by the pre-treatment. CO2 pre-treatment reduced Eriophorum litter quality, although this was not sufficient to predict decomposition. The N addition pre-treatment reduced the decomposition of Eriophorum, due to enhanced lignin and soluble phenols concentrations in the initial litter, and reduced litter-driven losses of starch and enhanced litter-driven losses of soluble phenols. While decomposition indices based on initial litter quality provide a broad explanation of quantitative and qualitative decomposition, they can only be taken as first approximations. Indeed, the microbial ATP activity, the litter N loss and resulting litter quality, were strongly altered irrespective of the compounds' initial concentration and by means of processes that occurred independently of the initial litter-qualitative changes. The experimental design was valuable to assess litter- and ecosystem-driven decomposition pathways simultaneously or independently. The ability to separate these two drivers makes it possible to attest the presence of litter-qualitative changes even without any litter biochemical determinations, and shows the screening potential of this approach for future experiments dealing with multiple plant species.  相似文献   
960.
Priming effects: Interactions between living and dead organic matter   总被引:1,自引:0,他引:1  
In this re-evaluation of our 10-year old paper on priming effects, I have considered the latest studies and tried to identify the most important needs for future research. Recent publications have shown that the increase or decrease in soil organic matter mineralization (measured as changes of CO2 efflux and N mineralization) actually results from interactions between living (microbial biomass) and dead organic matter. The priming effect (PE) is not an artifact of incubation studies, as sometimes supposed, but is a natural process sequence in the rhizosphere and detritusphere that is induced by pulses or continuous inputs of fresh organics. The intensity of turnover processes in such hotspots is at least one order of magnitude higher than in the bulk soil. Various prerequisites for high-quality, informative PE studies are outlined: calculating the budget of labeled and total C; investigating the dynamics of released CO2 and its sources; linking C and N dynamics with microbial biomass changes and enzyme activities; evaluating apparent and real PEs; and assessing PE sources as related to soil organic matter stabilization mechanisms. Different approaches for identifying priming, based on the assessment of more than two C sources in CO2 and microbial biomass, are proposed and methodological and statistical uncertainties in PE estimation and approaches to eliminating them are discussed. Future studies should evaluate directions and magnitude of PEs according to expected climate and land-use changes and the increased rhizodeposition under elevated CO2 as well as clarifying the ecological significance of PEs in natural and agricultural ecosystems. The conclusion is that PEs - the interactions between living and dead organic matter - should be incorporated in models of C and N dynamics, and that microbial biomass should regarded not only as a C pool but also as an active driver of C and N turnover.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号