首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   664篇
  免费   22篇
  国内免费   76篇
林业   52篇
农学   50篇
基础科学   131篇
  139篇
综合类   279篇
农作物   21篇
水产渔业   15篇
畜牧兽医   44篇
园艺   9篇
植物保护   22篇
  2024年   4篇
  2023年   26篇
  2022年   17篇
  2021年   35篇
  2020年   32篇
  2019年   24篇
  2018年   19篇
  2017年   42篇
  2016年   23篇
  2015年   33篇
  2014年   45篇
  2013年   30篇
  2012年   47篇
  2011年   46篇
  2010年   31篇
  2009年   41篇
  2008年   28篇
  2007年   40篇
  2006年   35篇
  2005年   23篇
  2004年   21篇
  2003年   17篇
  2002年   10篇
  2001年   14篇
  2000年   12篇
  1999年   8篇
  1998年   7篇
  1997年   7篇
  1996年   5篇
  1995年   6篇
  1994年   8篇
  1993年   8篇
  1992年   2篇
  1991年   5篇
  1990年   2篇
  1989年   3篇
  1988年   6篇
排序方式: 共有762条查询结果,搜索用时 15 毫秒
701.
中国畜牧业温室气体排放现状及峰值预测   总被引:4,自引:0,他引:4  
为了解近年来中国畜牧业温室气体的排放趋势,预测排放峰值,按照《省级温室气体清单编制指南(试行)》(2011)要求,根据中国2005—2015年畜禽饲养量,评估了中国2005—2015年畜牧业温室气体(GHG)的排放状况,并以欧盟、美国2013年的人均畜产品蛋白占有量为衡量指标,预估了中国畜牧业达到该水平时的年份以及该年份的温室气体排放量,作为中国畜牧业温室气体排放峰值。结果表明:2005—2015年中国畜牧业温室气体排放量的范围为4.06~4.52亿t CO_2-eq,总体呈现两次先降后升的趋势,最低点出现在2008年,最高点为2009年;2009年之后,中国畜牧业温室气体排放总量较为平稳。以2015年的数据为基础分析中国畜牧业温室气体排放的组成,肠道CH_4是主要排放源,所占比例为66.61%,粪便N_2O和CH_4排放比例分别为18.23%和15.16%;从畜禽种类来看,反刍动物(牛、羊)为主要来源,排放比例可达72.44%,猪和家禽所占的比例分别为19.22%和6.81%。因此,养牛业是中国畜牧业温室气体的主要排放源,其次为养猪业。就地域分布来看,2015年,中国畜牧业温室气体排放量居于前10位的省份呈现连片性。河南、四川、内蒙古、山东和云南居全国前列,是施行减排的重点区域;新疆和西藏地区也应作为CH_4减排的重点区域。对于中国畜牧业温室气体排放峰值而言,若要达到欧盟2013年的人均畜产品蛋白占有量水平,峰值出现在2034年,排放量为4.89亿t CO_2-eq,较2015年增长8.94%,年均增长率为2.90%;若要达到美国2013年的人均畜产品蛋白占有量水平,排放峰值则在2043年,排放量为5.10亿t CO_2-eq,较2015年增长13.53%,年均增长率为4.32%。  相似文献   
702.
山区洪水是农村自然灾害之一,以流经浙江省衢州寺坞村段的庙源溪为研究对象,针对小流域缺乏实测洪水资料的特点,基于地理信息系统(GIS)实现高精度和高效率的流域特征提取,利用不规则三角形网格和空间分析功能生成水文统计参数等值线,实现所需研究区的等值线的内插。根据GIS获取的水文模型参数,通过频率计算得到不同历时下不同频率的设计雨量,进而采用推理公式法计算得到设计洪峰,为山洪灾害预警提供依据。  相似文献   
703.
为了提高离心泵性能预测的精确度,降低水泵研发成本,对2种影响泵性能较大的隔舌模型进行了对比研究.通过Ansys ICEM CFD软件对离心泵3个结构部分进口、叶轮、蜗壳进行网格划分,利用商业软件 CFX 进行数值模拟.进口边界设定为均匀来流,出口边界设定为压力出口,进口段与叶轮壁面粗糙度0.02 mm,蜗壳壁面粗糙度0.05 mm,采用k-ε湍流模型并计算机械损失11%,容积损失4%,将模拟结果与试验数据进行对比发现:在各流量工况下,圆角隔舌模拟结果与试验数据误差较小且保持稳定;矩形隔舌模拟结果在小流量工况下接近试验数据,在大流量下则误差较大.通过压力分布和流线图发现随着流量的增大,圆角隔舌的高压区和流线分布都较为稳定,矩形隔舌在额定流量和大流量下高压区扩散,并且有旋涡产生,旋涡随流量增大而增强,影响了蜗壳内部流动,使得模拟误差变大.研究对比了2种隔舌模型外特性的差异,并通过流场分析找到了产生差异的原因,表明对隔舌进行圆角处理能明显地改善内部流场,从而提高泵的性能.  相似文献   
704.
随着农村用电负荷的迅速增长,部分供电半径大、负荷重的10 kV 配电线路无法满足用户需求,进行无功补偿势在必行。介绍无功补偿的配置原则及容量、安装位置确定方法,并以通辽市扎鲁特旗农网为例,进行无功补偿装置应用分析,为提升供电企业的供电质量提供参考。  相似文献   
705.
针对农村电网谐波污染越来越严重的情况,在Matlab环境下采用基于汉宁窗的快速傅立叶(FFT)算法,减少快速傅立叶变换存在的频谱泄漏问题,提高电力网谐波分析的准确度。仿真算例表明,运用基于汉宁窗的FFT方法进行电网谐波分析,可以获得较理想的结果。  相似文献   
706.
利用数学模型对高炉冶炼过程进行模拟是高炉炼铁新工艺研发的有效方法,网格生成技术是数值模拟过程中重要的前处理过程,是高炉模拟计算的先决条件。生成网格的质量对高炉模型模拟的精度、效率以及收敛性具有重要影响,因此,建立优质的网格对高炉数学模型的求解具有重要意义。文中提出了一种适用于高炉数学模型的适体坐标系(BFC)网格的生成方法,从求解区域的划分、椭圆型方程的转换、椭圆型方程的离散及BFC网格生成步骤等方面进行了研究,并把死料区的边界作为BFC网格计算的边界条件,使数学模型的求解过程得以简化。采用带有源项的泊松方程作为变换方程,网格的正交性和疏密程度便于控制。该网格生成算法原理简单、易于编程、网格生成效率高,生成的网格能够满足数学模型求解的要求。  相似文献   
707.
针对疏枝果园的变量对靶施药问题,提出基于移动激光扫描(Mobile laser scanning,MLS)技术的靶标叶面积计算方法,为变量施药实时提供基础数据。为消除激光雷达(Light detection and ranging,LiDAR)探测距离和施药车辆行驶速度对点云密度的影响,在车辆行驶方向和激光雷达扫描方向上计算每个测量点的分辨率,为MLS点云数据建立变尺度格网,以格网面积作为被激光束覆盖的叶面积,建立靶标总体格网面积(Total grid area,TGA)与真实总体叶面积(Total leaf area,TLA)的线性回归模型。采用仿真树模拟疏枝果树靶标,搭建移动激光扫描测量系统,采集靶标点云数据,改变探测距离及移动速度,获取了4种不同疏枝程度靶标的108个样本数据。试验结果表明,随着探测距离的增加和移动速度的降低,靶标点云数显著减少,变异系数最小为0.9209,靶标格网面积能稳定提取,变异系数最大为0.0537,TGA与TLA的拟合优度为0.9090,叶面积测量相对误差均值为9.16%。  相似文献   
708.
针对现有电容式土壤水分传感器精度低、功耗高、价格高、标定过程复杂等问题,基于RC稳态响应峰值检测原理,设计了一款土壤水分传感器,并对传感器敏感区域、电学特性、标定模型、温度和电导率特性进行了测试。实验结果表明,传感器测量体积含水率平均灵敏度为12.187 mV,敏感区域为3.8 cm×2.5 cm×7.2 cm;输出信号不受供电电压影响,消耗电流仅为3~4 mA;通过在不同介电常数溶液中标定,结合TOPP经验公式,建立的指数标定模型的决定系数R^2均大于0.96;传感器温漂引起的测量误差约为0.5%,在0~2000μS/cm范围内电导率引起的最大测量误差小于4.2%,传感器最大实测误差为2.17%。  相似文献   
709.
生物炭对黑土区土壤水分及其入渗性能的影响   总被引:8,自引:0,他引:8  
为探究黑土区施用生物炭对土壤水分及其入渗性能影响的持续性,2016—2018年连续3年在东北黑土区进行了单次施加生物炭(75 t/hm~2,BC处理)和不施加生物炭(CK处理)的室内外对比试验,分析各土层土壤含水率及土壤水分入渗过程。结果表明:施加生物炭可增加各土层土壤含水率,使其极值比K_a和变异系数C_v减小,且土壤含水率、K_a、C_v的变化幅度均随生物炭施用年限增加而减弱,2016—2018年苗期耕层土壤含水率增加最多,分别增加了14.54%、11.48%和7.08%;施加生物炭明显增大了土壤累积入渗量、土壤入渗速率,增强了土壤入渗能力,促进了湿润锋的运移,各年份BC处理土壤累积入渗量由大到小依次为2016年、2017年、2018年,初始入渗速率f_1分别增加了70.48%、58.98%和48.41%,土壤稳定入渗速率f_c由大到小依次为2016年BC处理(1.65 mm/min)、2017年BC处理(1.22 mm/min)、2018年BC处理(1.17 mm/min)、2016年CK处理(0.46 mm/min)、2017年CK处理(0.43 mm/min)和2018年CK处理(0.38 mm/min);2016—2018年中,2016年BC处理湿润锋运移距离最深(32.24 mm),各表征土壤入渗性能的指标均于生物炭施用当年效果最优,而后逐年减弱;土壤累积入渗量与时间具有幂函数关系,湿润锋运移距离与时间具有三次函数关系,R~2均在0.963~0.998之间;Philip、Kostiakov、Horton 3个入渗模型拟合对比结果表明,Kostiakov模型R~2最高(0.946~0.991)、RMSE最小(0.516~1.941 mm/min),拟合参数与实际情况相符,故本研究中Kostiakov模型拟合的土壤水分入渗过程最优。本研究可为东北黑土区施加生物炭后改良土壤水分入渗过程提供理论依据。  相似文献   
710.
为了快速、无损检测植物叶片叶绿素含量,基于叶绿素a和叶绿素b在光波长约660nm和460nm处有最大吸收峰的现象,设计了一种便携式植物叶片叶绿素含量无损检测仪。该检测仪主要由单片机、光源模块、光传感器、电源模块和输入输出模块等组成;其软件采用Keil C51编写,主要包括主函数、按键子函数、光采集子函数、数据处理子函数、显示子函数等。以菠菜、大青菜和油麦菜为试验对象,研究了460nm和660nm处植物叶片的吸光度与叶绿素含量之间的关系,结果表明,随着叶绿素含量的增加,吸光度增大,其关系可用二元一次方程描述(决定系数为080)。与分光光度法相比,本文设计检测仪的叶绿素含量检测误差为-0.32~0.20mg/g,平均绝对误差为0.14mg/g;与SPAD-502型叶绿素仪相比,本文设计检测仪的SPAD值绝对测量误差为-3.3~1.8,平均绝对误差为1.1,且成本低,响应时间小于2s。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号