首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9909篇
  免费   605篇
  国内免费   703篇
林业   544篇
农学   1270篇
基础科学   797篇
  1092篇
综合类   4315篇
农作物   437篇
水产渔业   839篇
畜牧兽医   1284篇
园艺   293篇
植物保护   346篇
  2024年   88篇
  2023年   194篇
  2022年   343篇
  2021年   413篇
  2020年   430篇
  2019年   403篇
  2018年   235篇
  2017年   377篇
  2016年   426篇
  2015年   408篇
  2014年   586篇
  2013年   643篇
  2012年   828篇
  2011年   803篇
  2010年   581篇
  2009年   567篇
  2008年   480篇
  2007年   567篇
  2006年   463篇
  2005年   451篇
  2004年   293篇
  2003年   268篇
  2002年   200篇
  2001年   173篇
  2000年   175篇
  1999年   134篇
  1998年   103篇
  1997年   83篇
  1996年   93篇
  1995年   61篇
  1994年   62篇
  1993年   64篇
  1992年   49篇
  1991年   42篇
  1990年   31篇
  1989年   43篇
  1988年   14篇
  1987年   13篇
  1986年   5篇
  1985年   10篇
  1984年   2篇
  1983年   3篇
  1980年   3篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1955年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
真空预冷技术在子芋冷藏保鲜上的应用研究   总被引:4,自引:3,他引:4  
将真空预冷技术配合塑料薄膜袋包装应用于冷藏保鲜子芋的预处理,研究不同的真空预冷处理工艺条件对子芋冷藏保鲜效果的影响,筛选最佳真空预冷工艺条件,并将保鲜效果同普通冷藏相比较。结果表明:采用真空室的真空度650 Pa,真空预冷终温4℃,预冷时间30 min进行真空预冷处理,并配合塑料薄膜袋包装的冷藏子芋比一般冷藏保鲜效果明显更好。表现在:冷藏30 d,外观饱满不皱皮,好果率提高19.5个百分点,失重率减少15.51个百分点,呼吸曲线明显下移,呼吸高峰推迟10 d出现,峰值减少20.2%。总糖保存率提高23.5个百分点。  相似文献   
992.
The soils of the Bodega Marine Reserve (BMR, Sonoma County, California) contain many nematode-trapping fungi and many ghost moth larvae parasitized by entomopathogenic nematodes. The current study determined whether these nematode-parasitized moth larvae, which can produce very large numbers of nematodes, enhanced the population densities of nematode-trapping fungi and whether the fungi trapped substantial numbers of nematodes emerging and dispersing from moths. Wax moths were used in place of ghost moths because the former are easier to obtain. When nematode-parasitized moth larvae were added to laboratory microcosms containing BMR field soil, the population densities of four nematode-trapping fungi increased substantially. The greatest increase in population density was by Arthrobotrys oligospora, which uses adhesive networks to capture nematodes. A. oligospora population density increased about 10 times when the added moth larvae were parasitized by the nematode Heterorhabditis marelatus and about 100 times when added moth larvae were parasitized by the nematode Steinernema glaseri. Other trapping fungi endemic to the soil and enhanced by nematode-parasitized moth larvae included Myzocytium glutinosporum, Drechslerella brochopaga, and Gamsylella gephyropaga, which produce adhesive spores, constricting rings, and adhesive branches, respectively. The data suggest that the previously documented abundance and diversity of nematode-trapping fungi in BMR soil can be explained, at least in part, by nematode-parasitized insects, although that inference requires further studies with ghost moths. The strong bottom-up enhancement of nematode-trapping fungi was not matched by a strong top-down suppression of nematodes, i.e. the fungi trapped fewer than 30% of dispersing nematodes.  相似文献   
993.
This review mainly discusses three related topics: the application of ecological theories to soil, the measurement of microbial diversity by molecular techniques and the impact of transgenic plants and microorganisms on genetic diversity of soil. These topics were debated at the Meeting on Soil Emergency held in Erice (Trapani, Italy) in 2001 for the celebration of the 50th anniversary of the Italian Society of Soil Science. Ecological theories have been developed by studying aboveground ecosystems but have neglected the belowground systems, despite the importance of the latter to the global nutrient cycling and to the presence of life on the Earth. Microbial diversity within the soil is crucial to many functions but it has been difficult in the past to determine the major components. Traditional methods of analysis are useful but with the use of molecular methods it is now possible to detect both culturable and unculturable microbial species. Despite these advances, the link between microbial diversity and soil functions is still a major challenge. Generally studies on genetically modified bacteria have not addressed directly the issue of microbial diversity, being mainly focused on their persistence in the environment, colonization ability in the rhizosphere, and survival. Concerns have been raised that transgenic plants might affect microbial communities in addition to environmental factors related to agricultural practice, season, field site and year. Transgenic plant DNA originating from senescent or degraded plant material or pollen has been shown to persist in soil. Horizontal transfer of transgenic plant DNA to bacteria has been shown by the restoration of deleted antibiotic resistance genes under laboratory in filter transformations, in sterile soil or in planta. However, the transformation frequencies under field conditions are supposed to be very low. It is important to underline that the public debate about antibiotic resistant genes in transgenic plants should not divert the attention from the real causes of bacterial resistance to antibiotics, such as the continued abuse and overuse of antibiotics prescribed by physicians and in animal husbandry.  相似文献   
994.
在陕西黄土高原地区分区基础上 ,对各区未来 2 0年粮食供需状况进行预测 ,并根据未来粮食供需形势 ,选择了陕西黄土高原地区最优的退耕和粮食补助模式  相似文献   
995.
We performed a controlled experiment with rice seedlings (Oryza sativa L.) growing in Petri dishes on homogeneous nutrient agar containing a simple rhizosphere food web consisting of a diverse bacterial community and a common soil protozoa, Acanthamoeba castellanii, as bacterial grazer. Presence of amoebae increased bacterial activity and significantly changed the community composition and spatial distribution of bacteria in the rhizosphere. In particular, Betaproteobacteria did benefit from protozoan grazing. We hypothesize that the changes in bacterial community composition affected the root architecture of rice plants. These effects on root architecture affect a fundamental aspect of plant productivity. Root systems in presence of protozoa were characterized by high numbers of elongated (L-type) laterals, those laterals that are a prerequisite for the construction of branched root systems. This was in sharp contrast to root system development in absence of protozoa, where high numbers of lateral root primordia and short (S-type) laterals occurred which did not grow out of the rhizosphere region of the axile root. As a consequence of nutrient release from grazed bacteria and changes in root architecture, the nitrogen content of rice shoots increased by 45% in presence of protozoa. Our study illustrates that interactions over three trophic levels, i.e. between plants, bacteria and protozoa significantly modify root architecture and nutrient uptake by plants.  相似文献   
996.
Bacteria were isolated from root-nodules collected from indigenous legumes at 38 separate locations in the Gascoyne and Pilbara regions of Western Australia. Authentication of cultures resulted in 31 being ascribed status as root-nodule bacteria based upon their nodulation of at least one of eight indigenous legume species. The authenticated isolates originated from eight legume genera from 19 sites. Isolates were characterised on the basis of their growth and physiology; 20 isolates were fast-growing and 11 were slow-growing (visible growth within 3 and 7 d, respectively). Fast-growers were isolated from Acacia, Isotropis, Lotus and Swainsona, whilst slow-growers were from Muelleranthus, Rhynchosia and Tephrosia. Indigofera produced one fast-growing isolate and seven slow-growing isolates. Three indigenous legumes (Swainsona formosa, Swainsona maccullochiana and Swainsona pterostylis) nodulated with fast-growing isolates and four species (Acacia saligna, Indigofera brevidens, Kennedia coccinea and Kennedia prorepens) nodulated with both fast- and slow-growing isolates. Swainsona kingii did not form nodules with any isolates. Fast-growing isolates were predominantly acid-sensitive, alkaline- and salt-tolerant. All slow-growing isolates grew well at pH 9.0 whilst more than half grew at pH 5.0, but all were salt-sensitive. All isolates were able to grow at 37 °C. The fast-growing isolates utilised disaccharides, whereas the slow-growing isolates did not. Symbiotic interactions of the isolates were assessed on three annual, one biennial and nine perennial exotic legume species that have agricultural use, or potential use, in southern Australia. Argyrolobium uniflorum, Chamaecytisus proliferus, Macroptilium atropurpureum, Ononis natrix, Phaseolus vulgaris and Sutherlandia microphylla nodulated with one or more of the authenticated isolates. Hedysarum coronarium, Medicago sativa, Ornithopus sativus, Ornithopus compressus, Trifolium burchellianum, Trifolium polymorphum and Trifolium uniflorum did not form nodules. Investigation of the 31 authenticated isolates by polymerase chain reaction with three primers resulted in the RPO1 primer distinguishing 20 separate banding patterns, while ERIC and PucFor primers distinguished 26 separate banding patterns. Sequencing the 16S rRNA gene for four fast- and two slow-growing isolates produced the following phylogenetic associations; WSM1701 and WSM1715 (isolated from Lotus cruentus and S. pterostylis, respectively) displayed 99% homology with Sinorhizobium meliloti, WSM1707 and WSM1721 (isolated from Sinorhizobium leeana and Indigofera sp., respectively) displayed 99% homology with Sinorhizobium terangae, WSM1704 (isolated from Tephrosia gardneri) shared 99% sequence homology with Bradyrhizobium elkanii, and WSM1743 (isolated from Indigofera sp.) displayed 99% homology with Bradyrhizobium japonicum.  相似文献   
997.
农机用O形密封圈滚子链的台架和道路的对比试验研究表明,铰链磨擦副的润滑状态改善后,其耐磨性能大幅度提高,磨损寿命远高于普通农机滚子链。同时还研究了O形圈链条与普通链条的磨损机制,并微观分析了磨损表面形貌,指出O形圈链条的磨损形式是以疲劳磨损为主,而普通链条因试验工况不同其主要磨损形式有所改变。  相似文献   
998.
We tested a hypothesis that the effects of defoliation on plants and soil organisms vary with the number of successive defoliations. We established a 23-week greenhouse experiment using replicated grassland microcosms that were composed of three plant species, Trifolium repens, Plantago lanceolata and Phleum pratense, growing together in grassland soil with a diverse soil community. The experiment consisted of two treatment factors-defoliation and harvest time-in a fully factorial design. The defoliation treatment had two levels, i.e. no trimming and trimming of plants every 2 weeks, and the harvest time five levels, i.e. harvests after 1-3, 5 and 7 trimmings. Shoot production (trimmed plus harvested shoot mass), harvested shoot and root mass and root N and C concentrations increased with time but were reduced by defoliation. Colonization rates of arbuscular mycorrhizal (AM) fungi decreased with time in T. repens roots but were enhanced by defoliation, whereas AM colonization rates in P. pratense roots were not affected by harvest time or defoliation. The abundance of bacterivorous and fungivorous nematodes decreased and that of herbivorous and predatory nematodes increased with time, while the abundance of omnivorous nematodes and detritivorous enchytraeids varied in time without a linear trend. Defoliation had no effect on fungivores and predators but increased the abundance of bacterivores. Defoliation also increased the abundance of herbivores, omnivores and detritivores after 2 trimmings and that of omnivores and detritivores after 5 trimmings, but had a negative effect on omnivores after 3 trimmings and on herbivores after 7 trimmings. Among nematode genera, some deviation from the trophic group responses existed: for instance, defoliation reduced the abundance of bacterivorous Acrobeloides spp. and did not affect the abundance of herbivorous Filenchus spp. and Paratylenchus spp. Our results show that the effects of defoliation on plants, AM fungi and some soil animal trophic groups may remain constant all the way through several defoliations, whereas other animal trophic groups may have different and even opposite responses to defoliation depending on the length of the defoliation period before monitoring. This shows how separate studies with defoliation periods of different length can produce contradictory results of the effects of defoliation on the abundance of soil animals.  相似文献   
999.
介绍了国内外有机农业的发展和意义,及无公害农产品、绿色食品和有机食品的关系,综述了世界绿色糖和有机糖甜菜的生产状况及其标准。  相似文献   
1000.
魔芋葡甘露聚糖作为一种传统的食品原料和食品添加剂,近年来在食品领域的应用研究日益引人注目。魔芋葡甘露聚糖是一种中性多糖,是魔芋的主要功能活性成分。魔芋葡甘露聚糖及其衍生物具有较好的凝胶性、增稠性、成膜性等功能特性,在食品工业中具有很高的研究开发和实际应用价值。本文综述了魔芋葡甘露聚糖及其衍生物的主要功能特性及其在食品工业中的应用,将为充分利用我国魔芋资源、提高其产品附加值开辟广阔的发展空间。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号