首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13147篇
  免费   747篇
  国内免费   1266篇
林业   588篇
农学   1072篇
基础科学   363篇
  5546篇
综合类   4766篇
农作物   858篇
水产渔业   317篇
畜牧兽医   795篇
园艺   276篇
植物保护   579篇
  2024年   126篇
  2023年   378篇
  2022年   522篇
  2021年   585篇
  2020年   566篇
  2019年   599篇
  2018年   508篇
  2017年   800篇
  2016年   873篇
  2015年   658篇
  2014年   685篇
  2013年   1073篇
  2012年   1149篇
  2011年   906篇
  2010年   673篇
  2009年   651篇
  2008年   606篇
  2007年   670篇
  2006年   582篇
  2005年   471篇
  2004年   353篇
  2003年   281篇
  2002年   196篇
  2001年   168篇
  2000年   158篇
  1999年   124篇
  1998年   110篇
  1997年   107篇
  1996年   93篇
  1995年   83篇
  1994年   56篇
  1993年   67篇
  1992年   64篇
  1991年   52篇
  1990年   36篇
  1989年   39篇
  1988年   33篇
  1987年   30篇
  1986年   8篇
  1985年   8篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1977年   3篇
  1962年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
To assess changes in organic carbon pools, an incubation experiment was conducted under different temperatures and field moisture capacity (FMC) on a brown loam soil from three tillage practices used for 12 years: no‐till (NT), subsoiling (ST) and conventional tillage (CT). Total microbial respiration was measured for incubated soil with and without the input of straw. Results indicated that soil organic carbon (SOC) and microbial biomass carbon (MBC) under ST, NT and CT was higher in soil with straw input than that without, while the microbial quotient (MQ or MBC: SOC) and metabolic quotient (qCO2) content under CT followed the opposite trend. Lower temperature, lower moisture and with straw input contributed to the increases in SOC concentration, especially under NT and ST systems. The SOC concentrations under ST, with temperatures of 30 and 35°C after incubation at 55% FMC, were greater than those under CT by 28.4% and 30.6%, respectively. The increase in MBC was highest at 35°C for 55%, 65% and 75% FMC; in soil under ST, MBC was greater than that under CT by 199.3%, 50.7% and 23.8%, respectively. At 30°C, the lower qCO2 was obtained in soil incubated under NT and ST. The highest MQ among three tillage practices was measured under ST at 55% FMC, NT at 65% FMC and CT at 75% FMC with straw input. These data indicate the benefits of enhancing the MQ; the low FMC was beneficial to ST treatment. Under higher temperature and drought stress conditions, the adaptive capacity of ST and NT is better than that of CT.  相似文献   
52.
Biochar application can improve soil properties, such as increasing soil organic carbon content, soil pH and water content. These properties are important to soil dissolved organic carbon (DOC); however, the effects of biochar on DOC concentration and composition have received little research attention, especially several years after biochar application under field conditions. This study was conducted in a long‐term experimental field where the biochar was only applied once in 2009. The purpose of the study was to investigate the effect of different biochar application rates (0, 30, 60 and 90 t ha?1) on the dynamics of soil water content, DOC concentration and DOC compositions (reducing sugar, soluble phenol and aromatics) over nine samplings during a 12‐month period in 2014. Our results showed that soil water content and DOC concentration varied from 7.1% to 14.5% and 59 to 230 mg C kg?1 soil during the 12 months, respectively. However, the biochar application rates did not significantly (p > 0.05) affect soil water content, DOC concentration and DOC composition at the same sampling period. The DOC concentration across the biochar treatments was positively correlated to soil water content. Moreover, the DOC composition (reducing sugar, soluble phenol or aromatics) and their concentrations were positively correlated to the total DOC concentration. In addition, biochar did not affect soil bulk density, pH, saturated hydraulic conductivity and crop yields. The results indicated that some benefits of biochar to soil may not persist 5 years after the application of biochar under a field condition.  相似文献   
53.
The antibacterial potential of organic acids and essential oil components against Brachyspira hyodysenteriae, the causative pathogen of swine dysentery, was evaluated. Minimum inhibitory concentrations (MIC) of 15 compounds were determined at pH 7.2 and pH 6.0, using a broth microdilution assay. In addition, possible synergism was determined. MIC values for the three tested strains were similar. For organic acids, MIC values at pH 6.0 were lower than at pH 7.2. B. hyodysenteriae was most sensitive to cinnamaldehyde and lauric acid, with MIC values <1.5 mM. Most antibacterial effects of binary combinations were additive, however, for thymol and carvacrol, synergism could be observed. In vitro results demonstrate the antibacterial action of certain essential oil components and organic acids against B. hyodysenteriae.  相似文献   
54.
Prescribed burning is a common land management technique in many areas of the UK uplands. However, concern has been expressed at the impact of this management practice on carbon stocks and fluxes found in the carbon‐rich peat soils that underlie many of these areas. This study measured both carbon stocks and carbon fluxes from a chronosequence of prescribed burn sites in northern England. A range of carbon parameters were measured including above ground biomass and carbon stocks; net ecosystem exchange (NEE), net ecosystem respiration (Reco) and photosynthesis (Pg) from closed chamber methods; and particulate organic carbon (POC). Analysis of the CO2 data showed that burning was a significant factor in measured CO2 readings but that other factors such as month of sampling explained a greater proportion of the variation in the data. Carbon budget results showed that whereas all the plots were net sources of carbon, the most recent burn scars were smaller sources of carbon compared with the older burn scars, suggesting that burning of Calluna‐dominated landscapes leads to an ‘avoided loss’ of carbon. However, this management intervention did not lead to a transition to a carbon sink and that for carbon purposes, active peat‐forming conditions are desirable.  相似文献   
55.
Quantifying the amount of carbon (C) incorporated from decomposing residues into soil organic carbon (CS) requires knowing the rate of C stabilization (humification rate) into different soil organic matter pools. However, the differential humification rates of C derived from belowground and aboveground biomass into CS pools has been poorly quantified. We estimated the contribution of aboveground and belowground biomass to the formation of CS in four agricultural treatments by measuring changes in δ13C natural abundance in particulate organic matter (CPOM) associated with manipulations of C3 and C4 biomass. The treatments were (1) continuous corn cropping (C4 plant), (2) continuous soybean cropping (C3), and two stubble exchange treatments (3 and 4) where the aboveground biomass left after the grain harvest was exchanged between corn and soybean plots, allowing the separation of aboveground and belowground C inputs to CS based on the different δ13C signatures. After two growing seasons, CPOM was primarily derived from belowground C inputs, even though they represented only ∼10% of the total plant C inputs as residues. Belowground biomass contributed from 60% to almost 80% of the total new C present in the CPOM in the top 10 cm of soil. The humification rate of belowground C inputs into CPOM was 24% and 10%, while that of aboveground C inputs was only 0.5% and 1.0% for soybean and corn, respectively. Our results indicate that roots can play a disproportionately important role in the CPOM budget in soils. Keywords Particulate organic matter; root carbon inputs; carbon isotopes; humification rate; corn; soybean.  相似文献   
56.
Application of hydrophilic polymers composed of cross‐linked polyacrylate can improve soil water‐holding capacity and accelerate the restoration of post‐mining substrates. In this work, we studied the persistence of a polyacrylate polymer incorporated into a soil and its impact on plant nutrients at a reclamation site of former lignite mining in Lusatia (Germany). In contrast to autumn application, the incorporation of the polymer enhanced the sequestration of plant‐derived carbon in the soil, which was reflected by a significant increase in the concentration of a lignin marker. Attenuated total reflexion–Fourier transform infrared spectra (ATR‐FTIR) and total elemental contents in the applied polymer suggested an intensive cation exchange between the polymer framework and the soil‐forming substrate. In addition, there was an enrichment of carbonaceous material, which seems to reduce the swelling and thus the water‐holding capacity of the cross‐linked polyacrylate. Conversely, this process protected the polymer structure from rapid decomposition.  相似文献   
57.
Cañahua (Chenopodium pallidicaule Aellen) is a semi‐domesticated relative of quinoa (Chenopodium quinoa Willd.) with high nutritious quality. It is tolerant to frost, drought, saline soils and pests. One seed yield limitation is seed loss during the maturity stages. Two greenhouse experiments in Denmark and field experiments in Bolivia were carried out to determine seed shattering in landraces and cultivars with different growth habits. 15–21 % of the seed shattering in the fields took place whilst the plants still were flowering and 25–35 % during physiological maturity. Seed shattering varied between locations on the Bolivian Altiplano. Cañahua types with the semi‐prostrate growth (‘lasta’) had the highest seed shattering rate in the greenhouse experiments. The Umacutama landrace had lower seed shattering (1 %) than the cultivar Kullaca (7.2 %) both of the ‘lasta’ type. Under field conditions, the cultivar Illimani with the erect growth (‘saihua’) had the highest seed shattering rate (6.4–33.7 %) at both locations and at four different sowing dates. The Umacutama had the lowest rate (0.5–1.5 %). There were no significant differences between plants of the ‘lasta’ and the ‘saihua’ types. The landrace had significantly less seed loss than the cultivars. However, in the greenhouse, the landrace yield was approximately 25 % lower than the yields of the cultivars. In general, cañahua cultivars had higher yield compared to landraces, but also a higher seed shattering rate. Landraces may be used in breeding programmes to develop high‐yielding cultivars with reduced seed shattering.  相似文献   
58.
We investigated nitrous oxide (N2O) emission from an irrigated rice field over two years to evaluate the management of nitrogenous fertiliser and its effect on reducing emissions. Four forms of nitrogenous fertilisers: NPK at the recommended application rate, starch–urea matrix (SUM) + PK, neem‐coated urea + PK and urea alone (urea without coating) were used. Gas samples were collected from the field at weekly intervals with the static chamber technique. N2O emissions from different treatments ranged from 11.58 to 215.81 N2O‐N μg/m2/h, and seasonal N2O emissions from 2.83 to 3.89 kg N2O‐N/ha. Compared with other fertilisers, N2O emissions were greatest after the application of the conventional NPK fertiliser. Moreover, SUM + PK reduced total N2O emissions by 22.33% (< 0.05) compared with NPK during the rice‐growing period (< 0.05). The results indicate a strong correlation between N2O emissions and soil organic carbon, nitrate, ammonium, above‐ and below‐ground plant biomass and photosynthesis (< 0.05). The application of SUM + PK in rice fields is suitable as a means of reducing N2O emissions without affecting grain production.  相似文献   
59.
本试验旨在分析抗草甘膦玉米和转Bt基因玉米原料及饲粮与同源非转基因玉米原料及饲粮体外总能消化率以及酶水解物能值,为转基因玉米的营养实质等同性仿生评定方法的研究提供参考。试验采用单因素完全随机设计,使用单胃动物仿生消化系统模拟饲料原料和饲粮在鸡胃肠道的消化过程,分析同源非转基因玉米、抗草甘膦玉米和转Bt基因玉米以及对应的3种玉米-豆粕饲粮在不同体外模拟消化阶段的干物质消化率、总能消化率和酶水解物能值的差异。结果表明:同源非转基因玉米、抗草甘膦玉米和转Bt基因玉米以及对应饲粮在常规概率成分含量上是相似的。抗草甘膦玉米及饲粮与同源非转基因玉米及饲粮相比,在干物质和能量胃消化率、全消化道消化率及酶水解物能值上均没有显著差异(P0.05)。转Bt基因玉米全消化道总能消化率低于同源非转基因玉米(P=0.03,变异系数=0.50%),对应玉米饲粮的酶水解物能值则高于同源非转基因玉米饲粮(P=0.02,变异系数=1.12%),但均处于仿生消化系统测试的误差范围内(变异系数≤1.64%)。由此可见,抗草甘膦玉米的酶水解物能值与同源对照玉米没有差异,而转Bt基因玉米存在统计学意义上的差异,但所有的测值均处于仿生消化系统的测试误差之内。仿生法发现的差异是否具有生物学意义有待体内试验验证。仿生法可为转基因饲料营养等同性研究提供一种新方法。  相似文献   
60.
Here, we examine soil-borne microbial biogeography as a function of the features that define an American Viticultural Area (AVA), a geographically delimited American wine grape-growing region, defined for its distinguishing features of climate, geology, soils, physical features (topography and water), and elevation. In doing so, we lay a foundation upon which to link the terroir of wine back to the soil-borne microbial communities. The objective of this study is to elucidate the hierarchy of drivers of soil bacterial community structure in wine grape vineyards in Napa Valley, California. We measured differences in the soil bacterial and archaeal community composition and diversity by sequencing the fourth variable region of the small subunit ribosomal RNA gene (16S V4 rDNA). Soil bacterial communities were structured with respect to soil properties and AVA, demonstrating the complexity of soil microbial biogeography at the landscape scale and within the single land-use type. Location and edaphic variables that distinguish AVAs were the strongest explanatory factors for soil microbial community structure. Notably, the relationship with TC and TN of the <53 μm and 53–250 μm soil fractions offers support for the role of bacterial community structure rather than individual taxa on fine soil organic matter content. We reason that AVA, climate, and topography each affect soil microbial communities through their suite of impacts on soil properties. The identification of distinctive soil microbial communities associated with a given AVA lends support to the idea that soil microbial communities form a key in linking wine terroir back to the biotic components of the soil environment, suggesting that the relationship between soil microbial communities and wine terroir should be examined further.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号