首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14634篇
  免费   886篇
  国内免费   1875篇
林业   498篇
农学   1400篇
基础科学   501篇
  5797篇
综合类   5733篇
农作物   1038篇
水产渔业   554篇
畜牧兽医   1091篇
园艺   238篇
植物保护   545篇
  2024年   115篇
  2023年   422篇
  2022年   674篇
  2021年   689篇
  2020年   736篇
  2019年   779篇
  2018年   641篇
  2017年   924篇
  2016年   1024篇
  2015年   755篇
  2014年   775篇
  2013年   1308篇
  2012年   1328篇
  2011年   1027篇
  2010年   820篇
  2009年   763篇
  2008年   593篇
  2007年   668篇
  2006年   586篇
  2005年   480篇
  2004年   355篇
  2003年   275篇
  2002年   211篇
  2001年   188篇
  2000年   155篇
  1999年   142篇
  1998年   121篇
  1997年   105篇
  1996年   111篇
  1995年   119篇
  1994年   71篇
  1993年   87篇
  1992年   65篇
  1991年   58篇
  1990年   49篇
  1989年   49篇
  1988年   39篇
  1987年   27篇
  1986年   20篇
  1985年   8篇
  1984年   6篇
  1983年   6篇
  1981年   3篇
  1980年   4篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1974年   1篇
  1973年   1篇
  1962年   4篇
排序方式: 共有10000条查询结果,搜索用时 859 毫秒
111.
Separation of livestock slurries followed by reverse osmosis yields mineral concentrates (MCs) in which almost all nitrogen (N) is ammonium (NH4)-N. The ability of MCs to substitute calcium ammonium nitrate (CAN), a common conventional mineral N fertilizer, was tested in two trials on a silty loam soil (ware potatoes, 2009 and 2010) and four trials on sandy soils (starch potatoes, 2009 and 2010; silage maize in 2010 and 2011). The N fertilizer replacement value (NFRV) of spring-injected MCs ranged from 72 to 84%, slightly less than their share of ammonium-N (90–100%). The fate of N that was apparently unavailable to crops was not fully disclosed, but there were indications that ammonia loss may have played a role.  相似文献   
112.
Abstract

A comparison was made of automated procedures and steam distillation for analysis of NH4 + and NO3 in KCl extracts of soils. Automated analysis of NH4 + utilized the phenate‐hypochlorite reaction. Nitrate was analyzed by E. coli reduction of NO3 to NO2‐which was then determined colorimetrically by reaction with sulfanilamide and napthylethylenediamine diHCl. Soil extracts were made with 1 M and 2 M KCl. Extracting with 1 M KCl was as effective as 2 M KCl. Extracts in 1 M KCl did not interfere with E. coli reduction of NO3‐, but 2 M KCl did. The automated procedures when compared to distillation gave similar if not better precision and reduced variation particularly at low N concentrations. The automated procedure tended to give higher values at higher NO3‐concentrations. Reduced time required for the analyses provided an additional advantage for the automated procedures.  相似文献   
113.
After decades of searching for a practical method to estimate the N mineralization capacity of soil, there is still no consistent methodology. Indeed it is important to have practical methods to estimate soil nitrogen release for plant uptake and that should be appropriate, less time consuming, and cost effective for farmers. We fractionated soil organic matter (SOM) to assess different fractions of SOM as predictors for net N mineralization measured from repacked (disturbed) and intact (undisturbed) soil cores in 14 weeks of laboratory incubations. A soil set consisting of surface soil from 18 cereal and root‐cropped arable fields was physically fractionated into coarse and fine free particulate OM (coarse fPOM and fine fPOM), intra‐microaggregate particulate OM (iPOM) and silt and clay sized OM. The silt and clay sized OM was further chemically fractionated by oxidation with 6% NaOCl to isolate an oxidation‐resistant OM fraction, followed by extraction of mineral bound OM with 10% HF (HF‐res OM). Stepwise multiple linear regression yielded a significant relationship between the annual N mineralization (kg N/ha) from undisturbed soil and coarse fPOM N (kg N/ha), silt and clay N (kg N/ha) and its C:N ratio (R2 = 0.80; P < 0.01). The relative annual N mineralization (% of soil N) from disturbed soils was related to coarse fPOM N, HF‐res OC (% of soil organic carbon) and its C:N ratio (R2 = 0.83; P < 0.01). Physical fractions of SOM were thus found to be the most useful predictors for estimating the annual N mineralization rate of undisturbed soils. However, the bioavailability of physical fractions was changed due to the disturbance of soil. For disturbed soils, a presumed stable chemical SOM fraction was found to be a relevant predictor indicating that this fraction still contains bio‐available N. The latter prompted a revision in our reasoning behind selective oxidation and extraction as tools for characterizing soil organic N quality with respect to N availability. Nonetheless, the present study also underscores the potential of a combined physical and chemical fractionation procedure for isolating and quantifying N fractions which preferentially contribute to bulk soil N mineralization. The N content or C:N ratio of such fractions may be used to predict N mineralization in arable soils.  相似文献   
114.
Nitrogen (N) is critical for micronutrient biofortification in wheat grain and is essential for a series of nitrogenous compounds biosynthesis. This study aims to assess the role of improved N supply in iron (Fe) and zinc (Zn) enrichment and expression of genes related to Zn and Fe chelation and transport in winter wheat. Potting and hydroponic culture experiments were conducted to study the effect of increasing N application on Zn and Fe uptake and translocation from roots to leaves and the temporal and spatial gene expression profiles of the NICOTIANAMINE SYNTHASE (NAS) genes in wheat. Plants were grown with low, medium and high N supply levels. The results showed that higher N application increased Fe and Zn content in leaves, and decreased Fe and Zn content in root compared with the lower N supply. High N application also increased the distribution of Fe and Zn from roots to leaves. Expression analysis showed that increased N application resulted in up-regulation of two wheat NAS genes, TaNAS1 and TaNAS2. Highly positive response between NAS genes and increasing N application indicated that abundance nicotianamine (NA) resulted from highly expressed NAS genes might involve in the chelation of Fe and Zn in the phloem and favor Fe and Zn uptake and accumulation in wheat leaves.  相似文献   
115.
The effects of bark mulch and NPK fertilizers on yield and leaf and soil nutrient status of ‘Korona’ strawberry plants (Fragaria×ananassa Duch.), were studied over a period of three years. A significant effect of mulching was found in the first harvest year, but additional fertilizer did not affect total yield. Bark mulch slightly decreased the level of leaf nitrogen, but increased the level of leaf phosphorus and potassium in all years. Bark had a significant, negative effect on soil nitrate and ammonium content in the two first seasons. Mulching increased the soil moisture content in all years.  相似文献   
116.
供氮水平对田间桑树叶片产量及其生理特性的影响   总被引:2,自引:0,他引:2  
为了探寻龙桑一号的适宜施氮量,从而指导桑农科学施用氮肥,以桑树品种龙桑一号为试验材料,在大田条件下研究了不同供氮(纯氮)水平(0、48.3、96.6、144.9、193.2和241.5kg.hm-2)对桑树叶片产量及其生理特性的影响情况。结果表明:当施氮量为0~193.2kg.hm-2时,桑树单株枝条数、单枝叶片数、单叶面积、单叶质量和单株产叶量均随供氮水平的增加而增加,而当施氮量达到241.5kg.hm-2时,桑树单叶面积、叶片质量和单株产叶量反而有所降低;施氮量在0~144.9kg.hm-2范围内,桑树叶片中的全氮(N)和全磷(P)含量均随施氮量的增加而提高,而当施氮量超过144.9kg.hm-2时,叶片中的全氮和全磷含量随着施氮量的增加反而有所降低,这说明施氮量过高反而降低了桑树对N和P的吸收;随着供氮水平的增加,桑树叶片中的叶绿素含量、可溶性蛋白和可溶性糖含量均随施氮量的增加而增加。从氮肥对桑树产叶量及其生理特性的影响情况来看,桑树品种龙桑一号田间的最佳施氮量为144.9~193.2kg.hm-2。  相似文献   
117.
 以东北山樱(Cerasus sachalinensis Kom.)幼苗为试材,研究了不同形态氮素对根系呼吸代谢及植株生物量的影响。结果表明,在施氮量相同的条件下,施加硝态氮和酰胺态氮在整个试验过程中(28 d)均显著提高了幼苗根系活力及呼吸底物的积累,而施加铵态氮对根系活力的促进作用只延续到处理后14 d,随后根系活力和呼吸底物含量逐渐降低;硝态氮处理促进了三羧酸循环(TCA)关键酶的活性,TCA循环在呼吸代谢途径中的比例较对照提高了30.4%,呼吸代谢中间产物丙酮酸和柠檬酸增加,而磷酸戊糖途径(PPP)和交替途径(AP)较对照分别下降了35.0%和32.7%。铵态氮处理效应基本与之相反。酰胺态氮处理除对EMP关键酶活性及电子传递途径无明显影响外,与硝态氮处理效应相似;3种形态氮素处理对幼苗生长均有促进作用,对植株生物量促进作用的大小表现为硝态氮 > 酰胺态氮 > 铵态氮 > 对照。  相似文献   
118.
The impacts of tillage and cropping sequences on soil organic matter and nutrients have been frequently reported to affect the uppermost soil layers, but there is little published information concerning effects at greater depth. This article reports results on the distribution of soil organic carbon (SOC), active carbon (AC), N, Olsen‐P and extractable K within 100 cm in short (4 yr) and long (16 yr) term experiments under different tillage systems. Short (TT4) and long (TT16) traditional tillage are compared with conservation tillage, reduced (RT16) and non‐tillage (NT4). The results show more accumulation of SOC in the near‐surface under RT16 and NT4 in both experiments compared with traditional tillage. Moreover, greater C content occurs to 40 cm depth in the long‐term experiment. The results demonstrate the importance of time on C accumulation, not only in near‐surface layers but also at greater depths. Active C is an indicator of the increase in soil quality in the long‐term experiment. This trend is only apparent for the first 10 cm in the short‐term experiment. Patterns in N, Olsen‐P and extractable K are similar to that of SOC. However, only extractable K is significantly greater in soil under conservation tillage (RT16 and NT4) after short and long periods. Potassium availability is a good indicator of the changes caused by tillage. Our results indicate that studies of soils at depth could be very useful in long‐term experiments to demonstrate the effect of conservation tillage on C and nutrient distribution.  相似文献   
119.
为了探究空育131的高产优质栽培的合理氮钾配施技术,试验采用随机区组设计,研究不同氮肥与钾肥互作对空育131品质的影响。结果表明:不同肥料处理对水稻碾磨品质、外观品质、营养品质及食味品质的影响显著(P0.05),不同肥料处理对水稻食味评分的影响均达到显著水平,且存在极显著的互作效应,氮钾互作下的食味评分以处理N_3K_4最高,即氮肥180kg·hm~(-2),钾肥135kg·hm~(-2)时为最佳配置,食味达到85.2分,较不施肥提高10.5%,差异达显著水平。  相似文献   
120.
Abstract

Work to evaluate the Orion nitrogen oxide electrode indicated that this electrode can be used satisfactorily for determination of nitrite in soil extracts and water samples. The electrode method of analysis described is simple, rapid, and precise, and its results agree closely with those obtained by the colorimetric method of Griess‐Ilosvay. The electrode method has the advantage that its results are not affected by color or turbidity or by Cu2+ and Hg2+ present in samples under analysis  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号