首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14966篇
  免费   813篇
  国内免费   1334篇
林业   1550篇
农学   2180篇
基础科学   1087篇
  2234篇
综合类   5715篇
农作物   1289篇
水产渔业   149篇
畜牧兽医   1098篇
园艺   460篇
植物保护   1351篇
  2024年   84篇
  2023年   297篇
  2022年   478篇
  2021年   480篇
  2020年   530篇
  2019年   611篇
  2018年   426篇
  2017年   655篇
  2016年   798篇
  2015年   571篇
  2014年   739篇
  2013年   958篇
  2012年   1107篇
  2011年   1049篇
  2010年   840篇
  2009年   856篇
  2008年   682篇
  2007年   749篇
  2006年   618篇
  2005年   611篇
  2004年   427篇
  2003年   400篇
  2002年   302篇
  2001年   320篇
  2000年   305篇
  1999年   274篇
  1998年   263篇
  1997年   239篇
  1996年   204篇
  1995年   187篇
  1994年   163篇
  1993年   195篇
  1992年   140篇
  1991年   126篇
  1990年   123篇
  1989年   74篇
  1988年   49篇
  1987年   48篇
  1986年   33篇
  1985年   20篇
  1984年   16篇
  1982年   15篇
  1981年   8篇
  1980年   11篇
  1979年   5篇
  1978年   8篇
  1977年   5篇
  1976年   7篇
  1962年   2篇
  1955年   3篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
41.
42.
Infection processes of Pyrenophora semeniperda on seedling and adult wheat leaves and wheat ears were investigated. Almost 100% germination of conidia occurred on seedling leaves, compared with 20–30% on adult leaves. Appressoria formed over the anticlinal epidermal cell walls and haloes always accompanied infection. Sometimes papillae formed within the leaves as a resistance mechanism. Infection hyphae ramified through the intercellular spaces of the mesophyll resulting in cellular disruption. The infection processes on floral tissues were similar to those observed on leaves; however, no infection occurred on anther, stigmatic or stylar tissues. Infection of ovarian tissue occurred both with and without appressoria formation. Hyphae grew mainly in the epidermal layers and appeared unable to breach the integumental layer as no growth was observed in endosperm or embryo tissues. The optimum dew period temperature for conidial germination was 23·6°C, compared with 19·9°C for lesion development, 20·4°C for the production of infection structures on seedling leaves and 23·7°C for floret infection. Leaf disease development occurred in a logistic manner in response to dew period, with maximum infection observed after 21 h compared with > 48 h in seeds. An initial dark phase during the dew period was necessary for infection and temperature after the dew period had an effect, with significantly more numerous and larger lesions being formed at 15°C compared with 30°C. Seedling leaves were found to be more susceptible than older leaves, under both field and controlled environment conditions. Infection of wheat seeds following inoculation of ears, or after harvest burial of inoculated disease-free seeds, was demonstrated. In the latter, 3-week-old seedlings were slightly stunted, whereas older plants were unaffected. The apparent unimportance of this plant pathogen as a cause of leaf disease in relation to its poor adaptation to dew periods and dew period temperature is discussed, along with the importance of its seed borne characteristics.  相似文献   
43.
调查分析稻粒黑粉病、穗颈稻瘟等两系杂交稻制种穗期主要病害的发生原因,提出了清除菌源、轮换制种、健身栽培、对口药剂防治等防治措施。  相似文献   
44.
Weed:spring barley competition for applied nitrogen in pig slurry   总被引:2,自引:0,他引:2  
Summary The experiments were carried out in the two spring barley fields of the organic six-course cattle:crop rotation at Foulumgaard, Denmark. The weed density was 300 and 1800 plants m−2 respectively. Pig slurry was applied by hand in microplots by four methods: broadcasting followed by incorporation, or injected in bands to depths of 5, 10 or 15 cm. Spring barley and weeds were sampled separately six times during the tillering and elongation phase of the spring barley. The effect of application method on dry-matter (d.m.) production, nitrogen uptake and recovery of applied nitrogen in the spring barley and the weeds is reported. Slurry banding halved the weed d.m. and weed N uptake compared with broadcasting, irrespective of weed density. Weeds recovered up to 12% of the applied nitrogen, which made them a significant competitor when the slurry was broadcast and incorporated. Banding by direct injection reduced the slurry:soil contact and the weed:crop competition balance for applied nitrogen moved in favour of the crop. Thus, the crop recovery of applied nitrogen at the end of the sampling period was increased from approximately 45% for broadcast and incorporated to approximately 50% for injected slurry, and coincidental weed recovery was reduced to a maximum of 5%. As the nitrogen supply normally affects plant d.m. production, banding of slurry might well improve crop competitiveness and its tolerance to mechanical weed control.  相似文献   
45.
果树转基因研究进展与产业化展望   总被引:11,自引:1,他引:11  
杨莉  徐昌杰  陈昆松 《果树学报》2003,20(5):331-337
综合有关文献归纳了15年来果树转基因研究成果,其中包括:(1)已实现转基因的果树种类,目前世界和我国的大宗水果苹果、柑橘、梨、桃、葡萄、香蕉、猕猴桃和草莓等均已成功实现遗传转化;(2)通过转基因改变的农艺学性状类型,如抗病虫、抗逆、提高果实贮藏性能、缩短童期和改善果实品质等;(3)对几个重要的遗传转化研究实例作了具体介绍。同时还阐述了转基因果树产业化现状和大田试验现状,探讨了转基因果树产业化进程滞后的原因和发展前景以及促进果树产业化发展可采取的一些策略。  相似文献   
46.
Surface and internal populations of Xanthomonas campestris pv. phaseoli, causal agent of common bacterial blight of bean, on and in flower buds, blossoms and pods of seven bean (Phaseolus vulgaris) genotypes were studied. Bean plants were grown in the field and artificially inoculated at the seedling stage (18 days old). The pathogen was recovered in high numbers from flower buds, blossoms, pods and seed of both resistant and susceptible bean genotypes. Significant differences (P = 0.05) in population levels of X. c. pv. phaseoli between stages of reproductive tissue development were observed. Infected seed from resistant bean genotypes had no visible symptoms. Such seed may play an important role in the epidemiology of common bacterial blight because they are difficult to detect and may occur at low frequency in seed lots, as was the case in the current study.  相似文献   
47.
Received April 24, 1997; received in final form June 29, 1997. Symptoms resembling tomato spotted wilt virus (TSWV) infections were documented among ornamental and vegetable crops in commercial greenhouses and open fields in Israel. Plants exhibiting these symptoms were collected from January 1992 to December 1996. Among cultivated plants analyzed for TSWV by enzyme-linked immunosorbent assay (ELISA), 19 species representing five families were found to be infected; natural infection was also recorded in six plant species of weeds. Virus identity was characterized by host range, serology and electron microscopy. Serological reaction with the isolates, found in Israel, using antisera from different sources as well as the sequence analysis of the nucleocapsid gene, demonstrated that the Israeli isolates of TSWV are a member of tospovirus serogroup I, type I (BR-01 strain). No virus transmission was found in seeds collected from virus-infected vegetable and ornamental crops. A non-radioactive molecular probe derived from the cloned nucleocapsid isolate enables specific detection of the virus in crude sap from infected plants. The detection of TSWV in Israel constitutes a severe potential threat to the ornamental and vegetable industry.  相似文献   
48.
大豆疫病的种子处理技术研究   总被引:2,自引:0,他引:2  
本试验用不同浓度的瑞毒锰锌、杀毒矾和克露进行大豆种子处理试验,结果表明,500ppm瑞毒锰锌对大豆疫病具有很好的治疗作用,而用杀毒矾以种子重量0.4—0.5%的剂量闷种,能显著地抑制大豆疫霉菌的侵入  相似文献   
49.
Five soil samples were taken from each of five fields with different crop management histories. Three of the fields were in an arable rotation, the fourth field was temporary grassland, and the final field was under permanent grass. Of the three arable fields, two had been cropped with winter wheat in three of the preceding 6 years, and the third had last been cropped with winter wheat once only, 6 years previously. With one exception, the winter wheat had been sprayed with the herbicide isoproturon. The rate of isoproturon degradation in laboratory incubations was strongly related to the previous management practices. In the five soils from the field that had been treated most regularly with isoproturon in recent years, <2.5% of the initial dose remained after 14 days, indicating considerable enhancement of degradation. In the soils from the field with two applications of the herbicide in the past 6 years, residues after 27 days varied from 5% to 37% of the amount applied. In soils from the other three sites, residue levels were less variable, and were inversely related to microbial biomass. In studies with selected soils from the field that had received three applications of isoproturon in the previous 6 years, kinetics of degradation were not first‐order but were indicative of microbial adaptation, and the average time to 50% loss of the herbicide (DT50) was 7.5 days. In selected soils from the field that had received just one application of isoproturon, degradation followed first‐order kinetics, indicative of cometabolism. Pre‐incubation of isoproturon in soil from the five fields led to significant enhancement of degradation only in the samples from the two fields that had a recent history of isoproturon application.  相似文献   
50.
Low temperatures may inhibit dormancy break in seeds of winter annuals, therefore it was hypothesized that seeds of Capsella bursa‐pastoris and Descurainia sophia that mature at high latitudes in late summer–early autumn would not germinate until they had been exposed to high summer temperatures. Consequently, germination would be delayed until the second autumn. Most freshly matured seeds of both species collected in August and September in southern Sweden were dormant. After 3 weeks of burial at simulated August (20/10°C) and September (15/6°C) temperatures, 28 and 27%, respectively, of the C. bursa‐pastoris and 56 and 59%, respectively, of the D. sophia seeds germinated in light at 15/6°C. In contrast, in germination phenology studies conducted in Sweden, only a few seeds of either species germinated during the first autumn following dispersal. However, there was a peak of germination of both species the following spring, demonstrating that dormancy was lost during exposure to the low habitat temperatures between late summer and early autumn and spring. Nearly 100% of the seeds of both species subjected to simulated annual seasonal temperature changes were viable after 30.5 months of burial. In the burial study, exhumed seeds of C. bursa‐pastoris were capable of germinating to 98–100% in light at the simulated spring–autumn temperature regime (15/6°C) in both spring and autumn, while those of D. sophia did so only in autumn. In early spring, however, seeds of D. sophia germinated to 17–50% at 15/6°C. Thus, most seeds of these two annual weeds that mature in late summer do not germinate in the first autumn, but they may do so the following spring or in some subsequent autumn or spring.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号